有限值函数的代数:函数与子代数的分类,实子代数与虚子代数

IF 0.2 Q4 MATHEMATICS
M. Malkov
{"title":"有限值函数的代数:函数与子代数的分类,实子代数与虚子代数","authors":"M. Malkov","doi":"10.11648/J.PAMJ.20190802.11","DOIUrl":null,"url":null,"abstract":"The classification of subalgebras of every algebra of finite-valued functions is constructed. Classes of this classifications do not intersect. Each class contains subalgebras with the same number of functions in minimal basis. Class with ordinal number 0 contains subalgebras that have no basis. The class with finite ordinal number n contains subalgebras whose minimal basis has n functions. The set of subalgebras of this class are countable. There is a class with infinite ordinal number. Subalgebras of this class have a minimal basis with infinite number of functions. The set of these subalgebras is continual. Only the class with ordinal number 1 is essential, all other classes are fictitious, since they are useless to classify functions. But classification of functions is the main problem of the algebra of finite-valued functions. A class of this classification is a set of functions extracted from one-member bases of a subalgebra. Each function generates by superpositions some subalgebra, and only this subalgebra. So, this function belongs to only one class. All these classes of functions belong to the class 1 of subalgebras. All subalgebras from classes with the other ordinal numbers are useless to classify functions. The set of these fictitious subalgebras is continual, the set of essential subalgebras are countable. The top level of the classification of functions contains the algebra of finite-valued functions. Next level contains maximal subalgebras. According to I.G. Rosenberg, there are 6 sets of maximal subalgebras. I.G. Rosenberg was wrong to state the set of his quasilinear functions be maximal. Only Yablonsky’s set of quasilinear functions is maximal. The sixth Rosenberg’s set also turns to be wrong. This right set was built by A.I. Maltsev. But from 6 sets only 3 sets contain essential subalgebras. And all maximal essential subalgebras containing 3-valued 2-place functions are built.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebra of Finite-Valued Functions: Classification of Functions and Subalgebras, Essential and Fictitious Subalgebras\",\"authors\":\"M. Malkov\",\"doi\":\"10.11648/J.PAMJ.20190802.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of subalgebras of every algebra of finite-valued functions is constructed. Classes of this classifications do not intersect. Each class contains subalgebras with the same number of functions in minimal basis. Class with ordinal number 0 contains subalgebras that have no basis. The class with finite ordinal number n contains subalgebras whose minimal basis has n functions. The set of subalgebras of this class are countable. There is a class with infinite ordinal number. Subalgebras of this class have a minimal basis with infinite number of functions. The set of these subalgebras is continual. Only the class with ordinal number 1 is essential, all other classes are fictitious, since they are useless to classify functions. But classification of functions is the main problem of the algebra of finite-valued functions. A class of this classification is a set of functions extracted from one-member bases of a subalgebra. Each function generates by superpositions some subalgebra, and only this subalgebra. So, this function belongs to only one class. All these classes of functions belong to the class 1 of subalgebras. All subalgebras from classes with the other ordinal numbers are useless to classify functions. The set of these fictitious subalgebras is continual, the set of essential subalgebras are countable. The top level of the classification of functions contains the algebra of finite-valued functions. Next level contains maximal subalgebras. According to I.G. Rosenberg, there are 6 sets of maximal subalgebras. I.G. Rosenberg was wrong to state the set of his quasilinear functions be maximal. Only Yablonsky’s set of quasilinear functions is maximal. The sixth Rosenberg’s set also turns to be wrong. This right set was built by A.I. Maltsev. But from 6 sets only 3 sets contain essential subalgebras. And all maximal essential subalgebras containing 3-valued 2-place functions are built.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.PAMJ.20190802.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20190802.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

构造了有限值函数的每一个代数的子代数的分类。这种分类的类不相交。每个类都包含子代数,在最小基中具有相同数量的函数。序数为0的类包含无基的子代数。有限序数n的类包含子代数,其最小基有n个函数。这类子代数的集合是可数的。有一类序数无穷。该类子代数具有具有无穷多个函数的极小基。这些子代数的集合是连续的。只有序数为1的类是必要的,其他所有的类都是虚构的,因为它们对函数分类是无用的。而函数的分类是有限值函数代数的主要问题。这种分类的类是从子代数的单元基中提取的函数集。每个函数通过叠加产生一些子代数,并且只有这个子代数。所以,这个函数只属于一个类。所有这些函数都属于子代数的第一类。所有其他序数类的子代数对函数的分类都是无用的。虚子代数的集合是连续的,本质子代数的集合是可数的。函数分类的顶层包含有限值函数的代数。下一层包含极大子代数。根据Rosenberg的理论,有6组极大子代数。Rosenberg说他的拟线性函数集是极大的是错误的。只有Yablonsky的拟线性函数集是极大的。罗森伯格的第六集也被证明是错的。右边这组是人工智能马尔采夫造的。但是在6个集合中,只有3个集合包含基本子代数。并建立了所有包含3值2位函数的极大本质子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebra of Finite-Valued Functions: Classification of Functions and Subalgebras, Essential and Fictitious Subalgebras
The classification of subalgebras of every algebra of finite-valued functions is constructed. Classes of this classifications do not intersect. Each class contains subalgebras with the same number of functions in minimal basis. Class with ordinal number 0 contains subalgebras that have no basis. The class with finite ordinal number n contains subalgebras whose minimal basis has n functions. The set of subalgebras of this class are countable. There is a class with infinite ordinal number. Subalgebras of this class have a minimal basis with infinite number of functions. The set of these subalgebras is continual. Only the class with ordinal number 1 is essential, all other classes are fictitious, since they are useless to classify functions. But classification of functions is the main problem of the algebra of finite-valued functions. A class of this classification is a set of functions extracted from one-member bases of a subalgebra. Each function generates by superpositions some subalgebra, and only this subalgebra. So, this function belongs to only one class. All these classes of functions belong to the class 1 of subalgebras. All subalgebras from classes with the other ordinal numbers are useless to classify functions. The set of these fictitious subalgebras is continual, the set of essential subalgebras are countable. The top level of the classification of functions contains the algebra of finite-valued functions. Next level contains maximal subalgebras. According to I.G. Rosenberg, there are 6 sets of maximal subalgebras. I.G. Rosenberg was wrong to state the set of his quasilinear functions be maximal. Only Yablonsky’s set of quasilinear functions is maximal. The sixth Rosenberg’s set also turns to be wrong. This right set was built by A.I. Maltsev. But from 6 sets only 3 sets contain essential subalgebras. And all maximal essential subalgebras containing 3-valued 2-place functions are built.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信