{"title":"线性规划中稳定性分析的一般问题","authors":"S.M. Shvartin","doi":"10.1016/0041-5553(90)90018-N","DOIUrl":null,"url":null,"abstract":"<div><p>The set of all canonical linear programming problems is considered for which a specified vector is a nondegenerate supporting optimal solution, and also the set of all such problems for which perturbations of the linear form coefficients not exceeding a given number leave the optimal solution invariant.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 1","pages":"Pages 125-128"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90018-N","citationCount":"0","resultStr":"{\"title\":\"The general problem of stability analysis in linear programming\",\"authors\":\"S.M. Shvartin\",\"doi\":\"10.1016/0041-5553(90)90018-N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The set of all canonical linear programming problems is considered for which a specified vector is a nondegenerate supporting optimal solution, and also the set of all such problems for which perturbations of the linear form coefficients not exceeding a given number leave the optimal solution invariant.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"Pages 125-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90018-N\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090018N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090018N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The general problem of stability analysis in linear programming
The set of all canonical linear programming problems is considered for which a specified vector is a nondegenerate supporting optimal solution, and also the set of all such problems for which perturbations of the linear form coefficients not exceeding a given number leave the optimal solution invariant.