集体自适应系统的数据验证:车辆位置数据的空间模型检验

V. Ciancia, S. Gilmore, D. Latella, M. Loreti, M. Massink
{"title":"集体自适应系统的数据验证:车辆位置数据的空间模型检验","authors":"V. Ciancia, S. Gilmore, D. Latella, M. Loreti, M. Massink","doi":"10.1109/SASOW.2014.16","DOIUrl":null,"url":null,"abstract":"In this paper we present the use of a novel spatial model-checker to detect problems in the data which an adaptive system gathers in order to inform future action. We categorise received data as being plausible, implausible, possible or problematic. Data correctness is essential to ensure correct functionality in systems which adapt in response to data and our categorisation influences the degree of caution which should be used in acting in response to this received data. We illustrate the theory with a concrete example of detecting errors in vehicle location data for buses in the city of Edinburgh. Vehicle location data is visualised symbolically on a street map, and categories of problems identified by the spatial model-checker are rendered by repainting the symbols for vehicles in different colours.","PeriodicalId":6458,"journal":{"name":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"35 1","pages":"32-37"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Data Verification for Collective Adaptive Systems: Spatial Model-Checking of Vehicle Location Data\",\"authors\":\"V. Ciancia, S. Gilmore, D. Latella, M. Loreti, M. Massink\",\"doi\":\"10.1109/SASOW.2014.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the use of a novel spatial model-checker to detect problems in the data which an adaptive system gathers in order to inform future action. We categorise received data as being plausible, implausible, possible or problematic. Data correctness is essential to ensure correct functionality in systems which adapt in response to data and our categorisation influences the degree of caution which should be used in acting in response to this received data. We illustrate the theory with a concrete example of detecting errors in vehicle location data for buses in the city of Edinburgh. Vehicle location data is visualised symbolically on a street map, and categories of problems identified by the spatial model-checker are rendered by repainting the symbols for vehicles in different colours.\",\"PeriodicalId\":6458,\"journal\":{\"name\":\"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"volume\":\"35 1\",\"pages\":\"32-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASOW.2014.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2014.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们提出了一种新的空间模型检查器来检测自适应系统收集的数据中的问题,以便为未来的行动提供信息。我们将收到的数据分为可信、不可信、可能或有问题。数据正确性对于确保系统的正确功能至关重要,这些系统可以根据数据进行调整,我们的分类影响了在响应接收到的数据时应该使用的谨慎程度。我们用爱丁堡市公交车车辆位置数据误差检测的具体例子来说明这一理论。车辆位置数据在街道地图上以符号形式可视化,由空间模型检查器识别的问题类别通过重新绘制不同颜色的车辆符号来呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Verification for Collective Adaptive Systems: Spatial Model-Checking of Vehicle Location Data
In this paper we present the use of a novel spatial model-checker to detect problems in the data which an adaptive system gathers in order to inform future action. We categorise received data as being plausible, implausible, possible or problematic. Data correctness is essential to ensure correct functionality in systems which adapt in response to data and our categorisation influences the degree of caution which should be used in acting in response to this received data. We illustrate the theory with a concrete example of detecting errors in vehicle location data for buses in the city of Edinburgh. Vehicle location data is visualised symbolically on a street map, and categories of problems identified by the spatial model-checker are rendered by repainting the symbols for vehicles in different colours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信