关于光滑数上单调函数的和

Pub Date : 2021-08-01 DOI:10.2478/ausm-2021-0016
G. Román
{"title":"关于光滑数上单调函数的和","authors":"G. Román","doi":"10.2478/ausm-2021-0016","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f) \\left( {{A_i}} \\right)_{i = 1}^\\infty \\subseteq dmn\\left( f \\right) , which requirements are sufficient for the asymptotic ∑n∈ANP(n)≤Nθf(n)∼ρ(1/θ)∑n∈ANf(n) \\sum\\limits_{\\matrix{{n \\in {A_N}} \\hfill \\cr {P\\left( n \\right) \\le {N^\\theta }} \\hfill \\cr } } {f\\left( n \\right) \\sim \\rho \\left( {1/\\theta } \\right)\\sum\\limits_{n \\in {A_N}} {f\\left( n \\right)} } to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sums of monotone functions over smooth numbers\",\"authors\":\"G. Román\",\"doi\":\"10.2478/ausm-2021-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f) \\\\left( {{A_i}} \\\\right)_{i = 1}^\\\\infty \\\\subseteq dmn\\\\left( f \\\\right) , which requirements are sufficient for the asymptotic ∑n∈ANP(n)≤Nθf(n)∼ρ(1/θ)∑n∈ANf(n) \\\\sum\\\\limits_{\\\\matrix{{n \\\\in {A_N}} \\\\hfill \\\\cr {P\\\\left( n \\\\right) \\\\le {N^\\\\theta }} \\\\hfill \\\\cr } } {f\\\\left( n \\\\right) \\\\sim \\\\rho \\\\left( {1/\\\\theta } \\\\right)\\\\sum\\\\limits_{n \\\\in {A_N}} {f\\\\left( n \\\\right)} } to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2021-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将研究单调函数f∈∈∈→∈≥0,以及自然数(Ai)i=1∞≥≥f的集合(Ai)i=1∞≥f (f) \left ({{A_i}}\right){_i =1} ^ \infty≥\subseteq dmn \left (f \right)的要求。∑n∈ANP(n)≤n θf(n)∼ρ(1/θ)∑n∈ANf(n) \sum\limits _ {\matrix{{n \in {A_N}} \hfill \cr {P\left( n \right) \le {N^\theta }} \hfill \cr } f }{\left (n \right) \sim\rho\left ({1/\theta}\right) \sum\limits _n{\in A_N{ f}}{\left (n \right),}其中n为正整数,θ∈(0,1)为常数,P(n)表示n的最大素数因子,ρ是Dickman函数。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On sums of monotone functions over smooth numbers
Abstract In this article, we are going to look at the requirements regarding a monotone function f ∈ ℝ →ℝ ≥0, and regarding the sets of natural numbers (Ai)i=1∞⊆dmn(f) \left( {{A_i}} \right)_{i = 1}^\infty \subseteq dmn\left( f \right) , which requirements are sufficient for the asymptotic ∑n∈ANP(n)≤Nθf(n)∼ρ(1/θ)∑n∈ANf(n) \sum\limits_{\matrix{{n \in {A_N}} \hfill \cr {P\left( n \right) \le {N^\theta }} \hfill \cr } } {f\left( n \right) \sim \rho \left( {1/\theta } \right)\sum\limits_{n \in {A_N}} {f\left( n \right)} } to hold, where N is a positive integer, θ ∈ (0, 1) is a constant, P(n) denotes the largest prime factor of n, and ρ is the Dickman function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信