{"title":"通过计算对${\\mathcal L}_s(^2l_{\\infty}^3)$极值点进行分类","authors":"Sung Guen Kim","doi":"10.15330/cmp.14.2.371-387","DOIUrl":null,"url":null,"abstract":"Let $l_{\\infty}^3=\\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\\mathcal L}_s(^2l_{\\infty}^3)$ only using Mathematica 8, where ${\\mathcal L}_s(^2l_{\\infty}^3)$ is the space of symmetric bilinear forms on $l_{\\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\\mathcal L}_s(^2l_{\\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of the extreme points of ${\\\\mathcal L}_s(^2l_{\\\\infty}^3)$ by computation\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.15330/cmp.14.2.371-387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $l_{\\\\infty}^3=\\\\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\\\\mathcal L}_s(^2l_{\\\\infty}^3)$ only using Mathematica 8, where ${\\\\mathcal L}_s(^2l_{\\\\infty}^3)$ is the space of symmetric bilinear forms on $l_{\\\\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\\\\mathcal L}_s(^2l_{\\\\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.371-387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.371-387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classification of the extreme points of ${\mathcal L}_s(^2l_{\infty}^3)$ by computation
Let $l_{\infty}^3=\mathbb{R}^3$ be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7], S.G. Kim classified the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ only using Mathematica 8, where ${\mathcal L}_s(^2l_{\infty}^3)$ is the space of symmetric bilinear forms on $l_{\infty}^3$. It seems to be interesting and meaningful to classify the extreme points of the unit ball of ${\mathcal L}_s(^2l_{\infty}^3)$ without using Mathematica 8. The aim of this paper is to make such classification by mathematical calculations.