基于矩阵范数更新的块坐标下降学习稀疏编码字典

Bradley M. Whitaker, David V. Anderson
{"title":"基于矩阵范数更新的块坐标下降学习稀疏编码字典","authors":"Bradley M. Whitaker, David V. Anderson","doi":"10.1109/ICASSP.2018.8461499","DOIUrl":null,"url":null,"abstract":"Researchers have recently examined a modified approach to sparse coding that encourages dictionaries to learn anomalous features. This is done by incorporating the matrix I-norm, or $\\ell_{1,\\infty}$ mixed matrix norm, into the dictionary update portion of a sparse coding algorithm. However, solving a matrix norm minimization problem in each iteration of the algorithm causes it to run more slowly. The purpose of this paper is to introduce block coordinate descent, a subgradient-like approach to minimizing the matrix norm, to the dictionary update. This approach removes the need to solve a convex optimization program in each iteration and dramatically reduces the time required to learn a dictionary. Importantly, the dictionary learned in this manner can still model anomalous features present in a dataset.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"89 1","pages":"2761-2765"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Block Coordinate Descent to Learn Sparse Coding Dictionaries with a Matrix Norm Update\",\"authors\":\"Bradley M. Whitaker, David V. Anderson\",\"doi\":\"10.1109/ICASSP.2018.8461499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have recently examined a modified approach to sparse coding that encourages dictionaries to learn anomalous features. This is done by incorporating the matrix I-norm, or $\\\\ell_{1,\\\\infty}$ mixed matrix norm, into the dictionary update portion of a sparse coding algorithm. However, solving a matrix norm minimization problem in each iteration of the algorithm causes it to run more slowly. The purpose of this paper is to introduce block coordinate descent, a subgradient-like approach to minimizing the matrix norm, to the dictionary update. This approach removes the need to solve a convex optimization program in each iteration and dramatically reduces the time required to learn a dictionary. Importantly, the dictionary learned in this manner can still model anomalous features present in a dataset.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"89 1\",\"pages\":\"2761-2765\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究人员最近研究了一种改进的稀疏编码方法,这种方法鼓励字典学习异常特征。这是通过将矩阵i -范数(或$\ell_{1,\infty}$混合矩阵范数)合并到稀疏编码算法的字典更新部分来实现的。然而,在每次迭代中解决矩阵范数最小化问题会导致算法运行速度变慢。本文的目的是将块坐标下降——一种类似于次梯度的最小化矩阵范数的方法引入到字典更新中。这种方法消除了在每次迭代中求解凸优化程序的需要,并大大减少了学习字典所需的时间。重要的是,以这种方式学习的字典仍然可以对数据集中存在的异常特征进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Block Coordinate Descent to Learn Sparse Coding Dictionaries with a Matrix Norm Update
Researchers have recently examined a modified approach to sparse coding that encourages dictionaries to learn anomalous features. This is done by incorporating the matrix I-norm, or $\ell_{1,\infty}$ mixed matrix norm, into the dictionary update portion of a sparse coding algorithm. However, solving a matrix norm minimization problem in each iteration of the algorithm causes it to run more slowly. The purpose of this paper is to introduce block coordinate descent, a subgradient-like approach to minimizing the matrix norm, to the dictionary update. This approach removes the need to solve a convex optimization program in each iteration and dramatically reduces the time required to learn a dictionary. Importantly, the dictionary learned in this manner can still model anomalous features present in a dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信