{"title":"用新物理学解释暗物质?","authors":"Stephane H Maes","doi":"10.31219/osf.io/fk27m","DOIUrl":null,"url":null,"abstract":"In a multi-fold universe, gravity emerges from entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles or regions. When applied to astrophysics, these effects are analogous to additional matter within or around galaxies. This way, we recover behaviors that match expected and observed effects when dark matter would be present or missing. No New Physics is introduced in terms of new particles beyond the Standard Model or modifying long range gravity: only the modeling of gravity as emerging from entanglement, in a multi-fold universe.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Explaining Dark Matter Without New Physics?\",\"authors\":\"Stephane H Maes\",\"doi\":\"10.31219/osf.io/fk27m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multi-fold universe, gravity emerges from entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles or regions. When applied to astrophysics, these effects are analogous to additional matter within or around galaxies. This way, we recover behaviors that match expected and observed effects when dark matter would be present or missing. No New Physics is introduced in terms of new particles beyond the Standard Model or modifying long range gravity: only the modeling of gravity as emerging from entanglement, in a multi-fold universe.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/fk27m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/fk27m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In a multi-fold universe, gravity emerges from entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles or regions. When applied to astrophysics, these effects are analogous to additional matter within or around galaxies. This way, we recover behaviors that match expected and observed effects when dark matter would be present or missing. No New Physics is introduced in terms of new particles beyond the Standard Model or modifying long range gravity: only the modeling of gravity as emerging from entanglement, in a multi-fold universe.