图像压缩中小波系数的自适应矢量量化

Y. Ang, M. Bi, S. Ong
{"title":"图像压缩中小波系数的自适应矢量量化","authors":"Y. Ang, M. Bi, S. Ong","doi":"10.1109/ICICS.1997.647148","DOIUrl":null,"url":null,"abstract":"To enhance the performance of nonlinear interpolative vector quantization for wavelet transform image coding, we propose a directional vector classification scheme that results in an adaptive interpolative vector quantization method suitable for wavelet-based image compression. Vectors consisting of wavelet-transformed coefficients are classified into different categories according to their directional activity energy. An adaptive bit assignment algorithm effectively allocates the bit budget among different categories. Simulation results show that the new vector quantization method gives superior compression performance and also reduced computational complexity in codebook training and quantization compared to the conventional interpolative vector quantization technique. For standard test images, the PSNR improvement is about 1 dB at the compression ratio of 50.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"65 1","pages":"500-504 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive vector quantization of wavelet coefficient for image compression\",\"authors\":\"Y. Ang, M. Bi, S. Ong\",\"doi\":\"10.1109/ICICS.1997.647148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the performance of nonlinear interpolative vector quantization for wavelet transform image coding, we propose a directional vector classification scheme that results in an adaptive interpolative vector quantization method suitable for wavelet-based image compression. Vectors consisting of wavelet-transformed coefficients are classified into different categories according to their directional activity energy. An adaptive bit assignment algorithm effectively allocates the bit budget among different categories. Simulation results show that the new vector quantization method gives superior compression performance and also reduced computational complexity in codebook training and quantization compared to the conventional interpolative vector quantization technique. For standard test images, the PSNR improvement is about 1 dB at the compression ratio of 50.\",\"PeriodicalId\":71361,\"journal\":{\"name\":\"信息通信技术\",\"volume\":\"65 1\",\"pages\":\"500-504 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息通信技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.1997.647148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.647148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高非线性插值矢量量化在小波变换图像编码中的性能,提出了一种方向矢量分类方案,该方案产生了一种适用于小波变换图像压缩的自适应插值矢量量化方法。由小波变换后的系数组成的矢量根据其方向活跃性的强弱被划分为不同的类别。自适应比特分配算法有效地将比特预算分配给不同的类别。仿真结果表明,与传统的插值矢量量化技术相比,新的矢量量化方法具有更好的压缩性能,并且降低了码本训练和量化的计算复杂度。对于标准测试图像,在压缩比为50时,PSNR改善约为1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive vector quantization of wavelet coefficient for image compression
To enhance the performance of nonlinear interpolative vector quantization for wavelet transform image coding, we propose a directional vector classification scheme that results in an adaptive interpolative vector quantization method suitable for wavelet-based image compression. Vectors consisting of wavelet-transformed coefficients are classified into different categories according to their directional activity energy. An adaptive bit assignment algorithm effectively allocates the bit budget among different categories. Simulation results show that the new vector quantization method gives superior compression performance and also reduced computational complexity in codebook training and quantization compared to the conventional interpolative vector quantization technique. For standard test images, the PSNR improvement is about 1 dB at the compression ratio of 50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信