{"title":"基于劳埃德聚类高斯混合的最小失真彩色图像检索","authors":"Sangoh Jeong, R. Gray","doi":"10.1109/DCC.2005.52","DOIUrl":null,"url":null,"abstract":"We consider image retrieval based on minimum distortion selection of features of color images modelled by Gauss mixtures. The proposed algorithm retrieves the image in a database having minimum distortion when the query image is encoded by a separate Gauss mixture codebook representing each image in the database. We use Gauss mixture vector quantization (GMVQ) for clustering Gauss mixtures, instead of the conventional expectation-maximization (EM) algorithm. Experimental comparison shows that the simpler GMVQ and the EM algorithms have close Gauss mixture parameters with similar convergence speeds. We also provide a new color-interleaving method, reducing the dimension of feature vectors and the size of covariance matrices, thereby reducing computation. This method shows a slightly better retrieval performance than the usual color-interleaving method in HSV color space. Our proposed minimum distortion image retrieval performs better than probabilistic image retrieval.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"112 1","pages":"279-288"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Minimum distortion color image retrieval based on Lloyd-clustered Gauss mixtures\",\"authors\":\"Sangoh Jeong, R. Gray\",\"doi\":\"10.1109/DCC.2005.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider image retrieval based on minimum distortion selection of features of color images modelled by Gauss mixtures. The proposed algorithm retrieves the image in a database having minimum distortion when the query image is encoded by a separate Gauss mixture codebook representing each image in the database. We use Gauss mixture vector quantization (GMVQ) for clustering Gauss mixtures, instead of the conventional expectation-maximization (EM) algorithm. Experimental comparison shows that the simpler GMVQ and the EM algorithms have close Gauss mixture parameters with similar convergence speeds. We also provide a new color-interleaving method, reducing the dimension of feature vectors and the size of covariance matrices, thereby reducing computation. This method shows a slightly better retrieval performance than the usual color-interleaving method in HSV color space. Our proposed minimum distortion image retrieval performs better than probabilistic image retrieval.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"112 1\",\"pages\":\"279-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2005.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimum distortion color image retrieval based on Lloyd-clustered Gauss mixtures
We consider image retrieval based on minimum distortion selection of features of color images modelled by Gauss mixtures. The proposed algorithm retrieves the image in a database having minimum distortion when the query image is encoded by a separate Gauss mixture codebook representing each image in the database. We use Gauss mixture vector quantization (GMVQ) for clustering Gauss mixtures, instead of the conventional expectation-maximization (EM) algorithm. Experimental comparison shows that the simpler GMVQ and the EM algorithms have close Gauss mixture parameters with similar convergence speeds. We also provide a new color-interleaving method, reducing the dimension of feature vectors and the size of covariance matrices, thereby reducing computation. This method shows a slightly better retrieval performance than the usual color-interleaving method in HSV color space. Our proposed minimum distortion image retrieval performs better than probabilistic image retrieval.