基于劳埃德聚类高斯混合的最小失真彩色图像检索

Sangoh Jeong, R. Gray
{"title":"基于劳埃德聚类高斯混合的最小失真彩色图像检索","authors":"Sangoh Jeong, R. Gray","doi":"10.1109/DCC.2005.52","DOIUrl":null,"url":null,"abstract":"We consider image retrieval based on minimum distortion selection of features of color images modelled by Gauss mixtures. The proposed algorithm retrieves the image in a database having minimum distortion when the query image is encoded by a separate Gauss mixture codebook representing each image in the database. We use Gauss mixture vector quantization (GMVQ) for clustering Gauss mixtures, instead of the conventional expectation-maximization (EM) algorithm. Experimental comparison shows that the simpler GMVQ and the EM algorithms have close Gauss mixture parameters with similar convergence speeds. We also provide a new color-interleaving method, reducing the dimension of feature vectors and the size of covariance matrices, thereby reducing computation. This method shows a slightly better retrieval performance than the usual color-interleaving method in HSV color space. Our proposed minimum distortion image retrieval performs better than probabilistic image retrieval.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"112 1","pages":"279-288"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Minimum distortion color image retrieval based on Lloyd-clustered Gauss mixtures\",\"authors\":\"Sangoh Jeong, R. Gray\",\"doi\":\"10.1109/DCC.2005.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider image retrieval based on minimum distortion selection of features of color images modelled by Gauss mixtures. The proposed algorithm retrieves the image in a database having minimum distortion when the query image is encoded by a separate Gauss mixture codebook representing each image in the database. We use Gauss mixture vector quantization (GMVQ) for clustering Gauss mixtures, instead of the conventional expectation-maximization (EM) algorithm. Experimental comparison shows that the simpler GMVQ and the EM algorithms have close Gauss mixture parameters with similar convergence speeds. We also provide a new color-interleaving method, reducing the dimension of feature vectors and the size of covariance matrices, thereby reducing computation. This method shows a slightly better retrieval performance than the usual color-interleaving method in HSV color space. Our proposed minimum distortion image retrieval performs better than probabilistic image retrieval.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"112 1\",\"pages\":\"279-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2005.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们考虑基于高斯混合模型的彩色图像特征的最小失真选择的图像检索。当查询图像由表示数据库中每个图像的单独高斯混合码本编码时,该算法检索数据库中具有最小失真的图像。我们使用高斯混合矢量量化(GMVQ)来代替传统的期望最大化(EM)算法对高斯混合进行聚类。实验对比表明,较简单的GMVQ算法和EM算法具有相近的高斯混合参数和相似的收敛速度。我们还提出了一种新的颜色交织方法,减少了特征向量的维数和协方差矩阵的大小,从而减少了计算量。在HSV色彩空间中,该方法的检索性能略好于通常的颜色交错法。我们提出的最小失真图像检索比概率图像检索性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum distortion color image retrieval based on Lloyd-clustered Gauss mixtures
We consider image retrieval based on minimum distortion selection of features of color images modelled by Gauss mixtures. The proposed algorithm retrieves the image in a database having minimum distortion when the query image is encoded by a separate Gauss mixture codebook representing each image in the database. We use Gauss mixture vector quantization (GMVQ) for clustering Gauss mixtures, instead of the conventional expectation-maximization (EM) algorithm. Experimental comparison shows that the simpler GMVQ and the EM algorithms have close Gauss mixture parameters with similar convergence speeds. We also provide a new color-interleaving method, reducing the dimension of feature vectors and the size of covariance matrices, thereby reducing computation. This method shows a slightly better retrieval performance than the usual color-interleaving method in HSV color space. Our proposed minimum distortion image retrieval performs better than probabilistic image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信