通过学习具有交叉帧注意力的静态视频来增强弱光视频

Shivam Chhirolya, Sameer Malik, R. Soundararajan
{"title":"通过学习具有交叉帧注意力的静态视频来增强弱光视频","authors":"Shivam Chhirolya, Sameer Malik, R. Soundararajan","doi":"10.48550/arXiv.2210.04290","DOIUrl":null,"url":null,"abstract":"The design of deep learning methods for low light video enhancement remains a challenging problem owing to the difficulty in capturing low light and ground truth video pairs. This is particularly hard in the context of dynamic scenes or moving cameras where a long exposure ground truth cannot be captured. We approach this problem by training a model on static videos such that the model can generalize to dynamic videos. Existing methods adopting this approach operate frame by frame and do not exploit the relationships among neighbouring frames. We overcome this limitation through a selfcross dilated attention module that can effectively learn to use information from neighbouring frames even when dynamics between the frames are different during training and test times. We validate our approach through experiments on multiple datasets and show that our method outperforms other state-of-the-art video enhancement algorithms when trained only on static videos.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"53 1","pages":"743"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low Light Video Enhancement by Learning on Static Videos with Cross-Frame Attention\",\"authors\":\"Shivam Chhirolya, Sameer Malik, R. Soundararajan\",\"doi\":\"10.48550/arXiv.2210.04290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of deep learning methods for low light video enhancement remains a challenging problem owing to the difficulty in capturing low light and ground truth video pairs. This is particularly hard in the context of dynamic scenes or moving cameras where a long exposure ground truth cannot be captured. We approach this problem by training a model on static videos such that the model can generalize to dynamic videos. Existing methods adopting this approach operate frame by frame and do not exploit the relationships among neighbouring frames. We overcome this limitation through a selfcross dilated attention module that can effectively learn to use information from neighbouring frames even when dynamics between the frames are different during training and test times. We validate our approach through experiments on multiple datasets and show that our method outperforms other state-of-the-art video enhancement algorithms when trained only on static videos.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"53 1\",\"pages\":\"743\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.04290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.04290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于难以捕获低光和地面真值视频对,用于低光视频增强的深度学习方法的设计仍然是一个具有挑战性的问题。这在动态场景或移动相机的背景下尤其困难,因为长时间曝光的地面真相无法捕捉。我们通过在静态视频上训练模型来解决这个问题,这样模型就可以推广到动态视频。采用这种方法的现有方法逐帧操作,不利用相邻帧之间的关系。我们通过自交叉扩展注意模块克服了这一限制,该模块可以有效地学习使用来自相邻帧的信息,即使在训练和测试期间帧之间的动态不同。我们通过在多个数据集上的实验验证了我们的方法,并表明当仅在静态视频上训练时,我们的方法优于其他最先进的视频增强算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Light Video Enhancement by Learning on Static Videos with Cross-Frame Attention
The design of deep learning methods for low light video enhancement remains a challenging problem owing to the difficulty in capturing low light and ground truth video pairs. This is particularly hard in the context of dynamic scenes or moving cameras where a long exposure ground truth cannot be captured. We approach this problem by training a model on static videos such that the model can generalize to dynamic videos. Existing methods adopting this approach operate frame by frame and do not exploit the relationships among neighbouring frames. We overcome this limitation through a selfcross dilated attention module that can effectively learn to use information from neighbouring frames even when dynamics between the frames are different during training and test times. We validate our approach through experiments on multiple datasets and show that our method outperforms other state-of-the-art video enhancement algorithms when trained only on static videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信