粉煤灰作为生物硅肥的碱性预处理研究

L. Santi, D. H. Goenadi, D. N. Kalbuadi, I. P. Sari, nbsp, Sulastri
{"title":"粉煤灰作为生物硅肥的碱性预处理研究","authors":"L. Santi, D. H. Goenadi, D. N. Kalbuadi, I. P. Sari, nbsp, Sulastri","doi":"10.4236/JMMCE.2021.92013","DOIUrl":null,"url":null,"abstract":"This study deals with the pre-treatment of coal fly ash (CFA) by using alkaline substance to improve water solubility of Si which in turn readily available to the plants. Selected weight ratios of CFA/NaOH (s:s) were tested and the highest H4SiO4 yield ratio was selected for further study. X-ray diffraction and scanning electron microscopy analyses were performed to confirm the evidence of structural changes of the CFA upon alkaline treatment. To improve SiO2 dissolution, seven Si-solubilizing fungi, i.e., Aspergillus niger BCC194, A. niger K0909, A. niger A1601, Trichoderma polysporum, T. viride, T. pseudokoningii, and Trichoderma spp, were each inoculated onto pre-treated ash. The results indicated that the relationships between ratio of CFA/NaOH and total and soluble Si were linier (R2 = 0.97** and 0.96**, respectively). Total SiO2 values range from 10.43% to 13.02%, whereas soluble Si contents were 2.30% - 2.64% improved about 300 times compared to un-treated CFA. Both XRD and SEM analyses indicated that alkaline treatment to CFA caused particle damages resulting in increasing soluble Si. Inoculation of pre-treated CFA by T. polysporum up to twelve days of incubation yielded the highest soluble Si. Each fungal species grown on Bunt & Rovira solid media enriched with CFA as Si-source expressed significantly different ability in solubilizing Si from CFA. Citric acid was shown to be stronger compared to acetic and oxalic acids in solubilizing Si from CFA.","PeriodicalId":16488,"journal":{"name":"Journal of Minerals and Materials Characterization and Engineering","volume":"111 1","pages":"180-193"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Alkaline Pre-Treatment of Coal Fly Ash as Bio-Silica Fertilizer\",\"authors\":\"L. Santi, D. H. Goenadi, D. N. Kalbuadi, I. P. Sari, nbsp, Sulastri\",\"doi\":\"10.4236/JMMCE.2021.92013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study deals with the pre-treatment of coal fly ash (CFA) by using alkaline substance to improve water solubility of Si which in turn readily available to the plants. Selected weight ratios of CFA/NaOH (s:s) were tested and the highest H4SiO4 yield ratio was selected for further study. X-ray diffraction and scanning electron microscopy analyses were performed to confirm the evidence of structural changes of the CFA upon alkaline treatment. To improve SiO2 dissolution, seven Si-solubilizing fungi, i.e., Aspergillus niger BCC194, A. niger K0909, A. niger A1601, Trichoderma polysporum, T. viride, T. pseudokoningii, and Trichoderma spp, were each inoculated onto pre-treated ash. The results indicated that the relationships between ratio of CFA/NaOH and total and soluble Si were linier (R2 = 0.97** and 0.96**, respectively). Total SiO2 values range from 10.43% to 13.02%, whereas soluble Si contents were 2.30% - 2.64% improved about 300 times compared to un-treated CFA. Both XRD and SEM analyses indicated that alkaline treatment to CFA caused particle damages resulting in increasing soluble Si. Inoculation of pre-treated CFA by T. polysporum up to twelve days of incubation yielded the highest soluble Si. Each fungal species grown on Bunt & Rovira solid media enriched with CFA as Si-source expressed significantly different ability in solubilizing Si from CFA. Citric acid was shown to be stronger compared to acetic and oxalic acids in solubilizing Si from CFA.\",\"PeriodicalId\":16488,\"journal\":{\"name\":\"Journal of Minerals and Materials Characterization and Engineering\",\"volume\":\"111 1\",\"pages\":\"180-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Minerals and Materials Characterization and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JMMCE.2021.92013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Minerals and Materials Characterization and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JMMCE.2021.92013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了用碱性物质对粉煤灰进行预处理,以提高硅的水溶性,从而使植物易于获得硅。测试了选定的CFA/NaOH的重量比(s:s),并选择了最高的H4SiO4收率进行进一步研究。x射线衍射和扫描电镜分析证实了碱性处理后CFA结构变化的证据。为了提高SiO2的溶解性,将黑曲霉BCC194、黑曲霉K0909、黑曲霉A1601、多孢木霉、绿霉、假孔木霉和木霉分别接种到预处理灰上。结果表明,CFA/NaOH与总硅和可溶性硅的比值呈线性关系(R2分别为0.97**和0.96**)。总SiO2值为10.43% ~ 13.02%,可溶性Si含量为2.30% ~ 2.64%,比未处理的CFA提高了约300倍。XRD和SEM分析表明,碱法处理对CFA造成颗粒损伤,导致可溶性Si增加。用多孢霉接种预处理过的CFA至12天,可获得最高的可溶性Si。在富含CFA作为硅源的Bunt & Rovira固体培养基上生长的不同真菌对CFA中硅的溶解能力有显著差异。柠檬酸比乙酸和草酸更能溶解CFA中的硅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alkaline Pre-Treatment of Coal Fly Ash as Bio-Silica Fertilizer
This study deals with the pre-treatment of coal fly ash (CFA) by using alkaline substance to improve water solubility of Si which in turn readily available to the plants. Selected weight ratios of CFA/NaOH (s:s) were tested and the highest H4SiO4 yield ratio was selected for further study. X-ray diffraction and scanning electron microscopy analyses were performed to confirm the evidence of structural changes of the CFA upon alkaline treatment. To improve SiO2 dissolution, seven Si-solubilizing fungi, i.e., Aspergillus niger BCC194, A. niger K0909, A. niger A1601, Trichoderma polysporum, T. viride, T. pseudokoningii, and Trichoderma spp, were each inoculated onto pre-treated ash. The results indicated that the relationships between ratio of CFA/NaOH and total and soluble Si were linier (R2 = 0.97** and 0.96**, respectively). Total SiO2 values range from 10.43% to 13.02%, whereas soluble Si contents were 2.30% - 2.64% improved about 300 times compared to un-treated CFA. Both XRD and SEM analyses indicated that alkaline treatment to CFA caused particle damages resulting in increasing soluble Si. Inoculation of pre-treated CFA by T. polysporum up to twelve days of incubation yielded the highest soluble Si. Each fungal species grown on Bunt & Rovira solid media enriched with CFA as Si-source expressed significantly different ability in solubilizing Si from CFA. Citric acid was shown to be stronger compared to acetic and oxalic acids in solubilizing Si from CFA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信