spark:为大内存机器和分析优化spark

Mijung Kim, Jun Yu Li, Haris Volos, M. Marwah, A. Ulanov, K. Keeton, Joseph A. Tucek, L. Cherkasova, Le Xu, Pradeep R. Fernando
{"title":"spark:为大内存机器和分析优化spark","authors":"Mijung Kim, Jun Yu Li, Haris Volos, M. Marwah, A. Ulanov, K. Keeton, Joseph A. Tucek, L. Cherkasova, Le Xu, Pradeep R. Fernando","doi":"10.1145/3127479.3134762","DOIUrl":null,"url":null,"abstract":"Given the growing availability of affordable scale-up servers, our goal is to bring the performance benefits of in-memory processing on scale-up servers to an increasingly common class of data analytics applications that process small to medium size datasets (up to a few 100GBs) that can easily fit in the memory of a typical scale-up server To achieve this goal, we leverage Spark, an existing memory-centric data analytics framework with wide-spread adoption among data scientists. Bringing Spark's data analytic capabilities to a scale-up system requires rethinking the original design assumptions, which, although effective for a scale-out system, are a poor match to a scale-up system resulting in unnecessary communication and memory inefficiencies.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Sparkle: optimizing spark for large memory machines and analytics\",\"authors\":\"Mijung Kim, Jun Yu Li, Haris Volos, M. Marwah, A. Ulanov, K. Keeton, Joseph A. Tucek, L. Cherkasova, Le Xu, Pradeep R. Fernando\",\"doi\":\"10.1145/3127479.3134762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the growing availability of affordable scale-up servers, our goal is to bring the performance benefits of in-memory processing on scale-up servers to an increasingly common class of data analytics applications that process small to medium size datasets (up to a few 100GBs) that can easily fit in the memory of a typical scale-up server To achieve this goal, we leverage Spark, an existing memory-centric data analytics framework with wide-spread adoption among data scientists. Bringing Spark's data analytic capabilities to a scale-up system requires rethinking the original design assumptions, which, although effective for a scale-out system, are a poor match to a scale-up system resulting in unnecessary communication and memory inefficiencies.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3134762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3134762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

考虑到可负担得起的扩展服务器的可用性越来越高,我们的目标是将扩展服务器上内存处理的性能优势带给越来越常见的数据分析应用程序,这些应用程序处理中小型数据集(最多100gb),这些数据集可以很容易地适应典型的扩展服务器的内存。为了实现这一目标,我们利用了Spark,这是一个现有的以内存为中心的数据分析框架,在数据科学家中得到了广泛的采用。将Spark的数据分析功能应用到扩展系统中需要重新考虑最初的设计假设,尽管这些假设对于扩展系统是有效的,但对于扩展系统来说却不太合适,从而导致不必要的通信和内存效率低下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparkle: optimizing spark for large memory machines and analytics
Given the growing availability of affordable scale-up servers, our goal is to bring the performance benefits of in-memory processing on scale-up servers to an increasingly common class of data analytics applications that process small to medium size datasets (up to a few 100GBs) that can easily fit in the memory of a typical scale-up server To achieve this goal, we leverage Spark, an existing memory-centric data analytics framework with wide-spread adoption among data scientists. Bringing Spark's data analytic capabilities to a scale-up system requires rethinking the original design assumptions, which, although effective for a scale-out system, are a poor match to a scale-up system resulting in unnecessary communication and memory inefficiencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信