{"title":"舍数小于5.8的全正代数整数的通常测度的上界","authors":"V. Flammang","doi":"10.1090/mcom/3580","DOIUrl":null,"url":null,"abstract":"Previously, we established lower bounds for the usual measures (trace, length, Mahler measure) of totally positive algebraic integers, i.e., all of whose conjugates are positive real numbers. We used the method of explicit auxiliary functions and we noticed that the house of most of the totally positive polynomials involved in our functions are bounded by 5.8. Thanks to this observation, we are able to use the same method and give upper bounds for the usual measures of totally positive algebraic integers with house bounded by this value. To our knowledge, theses upper bounds are the first results of this kind.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"52 1","pages":"379-388"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bounds for the usual measures of totally positive algebraic integers with house less than 5.8\",\"authors\":\"V. Flammang\",\"doi\":\"10.1090/mcom/3580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously, we established lower bounds for the usual measures (trace, length, Mahler measure) of totally positive algebraic integers, i.e., all of whose conjugates are positive real numbers. We used the method of explicit auxiliary functions and we noticed that the house of most of the totally positive polynomials involved in our functions are bounded by 5.8. Thanks to this observation, we are able to use the same method and give upper bounds for the usual measures of totally positive algebraic integers with house bounded by this value. To our knowledge, theses upper bounds are the first results of this kind.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"52 1\",\"pages\":\"379-388\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upper bounds for the usual measures of totally positive algebraic integers with house less than 5.8
Previously, we established lower bounds for the usual measures (trace, length, Mahler measure) of totally positive algebraic integers, i.e., all of whose conjugates are positive real numbers. We used the method of explicit auxiliary functions and we noticed that the house of most of the totally positive polynomials involved in our functions are bounded by 5.8. Thanks to this observation, we are able to use the same method and give upper bounds for the usual measures of totally positive algebraic integers with house bounded by this value. To our knowledge, theses upper bounds are the first results of this kind.