{"title":"S^2 \\乘以S^1$的连接和的映射类群","authors":"Tara E. Brendle, N. Broaddus, Andrew Putman","doi":"10.1090/tran/8758","DOIUrl":null,"url":null,"abstract":"Let $M_n$ be the connect sum of $n$ copies of $S^2 \\times S^1$. A classical theorem of Laudenbach says that the mapping class group $Mod(M_n)$ is an extension of $Out(F_n)$ by a group $(\\mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $Mod(M_n)$ is the semidirect product of $Out(F_n)$ by $(\\mathbb{Z}/2)^n$, which $Out(F_n)$ acts on via the dual of the natural surjection $Out(F_n) \\rightarrow GL_n(\\mathbb{Z}/2)$. Our splitting takes $Out(F_n)$ to the subgroup of $Mod(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbach's original proof, including the identification of the twist subgroup with $(\\mathbb{Z}/2)^n$.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The mapping class group of connect sums of $S^2 \\\\times S^1$\",\"authors\":\"Tara E. Brendle, N. Broaddus, Andrew Putman\",\"doi\":\"10.1090/tran/8758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M_n$ be the connect sum of $n$ copies of $S^2 \\\\times S^1$. A classical theorem of Laudenbach says that the mapping class group $Mod(M_n)$ is an extension of $Out(F_n)$ by a group $(\\\\mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $Mod(M_n)$ is the semidirect product of $Out(F_n)$ by $(\\\\mathbb{Z}/2)^n$, which $Out(F_n)$ acts on via the dual of the natural surjection $Out(F_n) \\\\rightarrow GL_n(\\\\mathbb{Z}/2)$. Our splitting takes $Out(F_n)$ to the subgroup of $Mod(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbach's original proof, including the identification of the twist subgroup with $(\\\\mathbb{Z}/2)^n$.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mapping class group of connect sums of $S^2 \times S^1$
Let $M_n$ be the connect sum of $n$ copies of $S^2 \times S^1$. A classical theorem of Laudenbach says that the mapping class group $Mod(M_n)$ is an extension of $Out(F_n)$ by a group $(\mathbb{Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $Mod(M_n)$ is the semidirect product of $Out(F_n)$ by $(\mathbb{Z}/2)^n$, which $Out(F_n)$ acts on via the dual of the natural surjection $Out(F_n) \rightarrow GL_n(\mathbb{Z}/2)$. Our splitting takes $Out(F_n)$ to the subgroup of $Mod(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbach's original proof, including the identification of the twist subgroup with $(\mathbb{Z}/2)^n$.