Yang Deng, Yuexiang Xie, Yaliang Li, Min Yang, W. Lam, Ying Shen
{"title":"情境化知识感知细心神经网络:用知识增强答案选择","authors":"Yang Deng, Yuexiang Xie, Yaliang Li, Min Yang, W. Lam, Ying Shen","doi":"10.1145/3457533","DOIUrl":null,"url":null,"abstract":"Answer selection, which is involved in many natural language processing applications, such as dialog systems and question answering (QA), is an important yet challenging task in practice, since conventional methods typically suffer from the issues of ignoring diverse real-world background knowledge. In this article, we extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG). First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network, which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information. Then, we develop two kinds of knowledge-aware attention mechanism to summarize both the context-based and knowledge-based interactions between questions and answers. To handle the diversity and complexity of KG information, we further propose a Contextualized Knowledge-aware Attentive Neural Network, which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network and comprehensively learns context-based and knowledge-based sentence representation via the multi-view knowledge-aware attention mechanism. We evaluate our method on four widely used benchmark QA datasets, including WikiQA, TREC QA, InsuranceQA, and Yahoo QA. Results verify the benefits of incorporating external knowledge from KG and show the robust superiority and extensive applicability of our method.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"69 1","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Contextualized Knowledge-aware Attentive Neural Network: Enhancing Answer Selection with Knowledge\",\"authors\":\"Yang Deng, Yuexiang Xie, Yaliang Li, Min Yang, W. Lam, Ying Shen\",\"doi\":\"10.1145/3457533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Answer selection, which is involved in many natural language processing applications, such as dialog systems and question answering (QA), is an important yet challenging task in practice, since conventional methods typically suffer from the issues of ignoring diverse real-world background knowledge. In this article, we extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG). First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network, which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information. Then, we develop two kinds of knowledge-aware attention mechanism to summarize both the context-based and knowledge-based interactions between questions and answers. To handle the diversity and complexity of KG information, we further propose a Contextualized Knowledge-aware Attentive Neural Network, which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network and comprehensively learns context-based and knowledge-based sentence representation via the multi-view knowledge-aware attention mechanism. We evaluate our method on four widely used benchmark QA datasets, including WikiQA, TREC QA, InsuranceQA, and Yahoo QA. Results verify the benefits of incorporating external knowledge from KG and show the robust superiority and extensive applicability of our method.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"69 1\",\"pages\":\"1 - 33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contextualized Knowledge-aware Attentive Neural Network: Enhancing Answer Selection with Knowledge
Answer selection, which is involved in many natural language processing applications, such as dialog systems and question answering (QA), is an important yet challenging task in practice, since conventional methods typically suffer from the issues of ignoring diverse real-world background knowledge. In this article, we extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG). First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network, which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information. Then, we develop two kinds of knowledge-aware attention mechanism to summarize both the context-based and knowledge-based interactions between questions and answers. To handle the diversity and complexity of KG information, we further propose a Contextualized Knowledge-aware Attentive Neural Network, which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network and comprehensively learns context-based and knowledge-based sentence representation via the multi-view knowledge-aware attention mechanism. We evaluate our method on four widely used benchmark QA datasets, including WikiQA, TREC QA, InsuranceQA, and Yahoo QA. Results verify the benefits of incorporating external knowledge from KG and show the robust superiority and extensive applicability of our method.