在超材料热光伏发射器中使用各种材料作为金属部件

IF 0.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
M.A. Yasnohorodskyi
{"title":"在超材料热光伏发射器中使用各种材料作为金属部件","authors":"M.A. Yasnohorodskyi","doi":"10.30837/rt.2022.3.210.13","DOIUrl":null,"url":null,"abstract":"Thermophotovoltaics (TPV) is a process by which photons emitted by a heat emitter are converted into electrical energy by a photovoltaic cell. Selective heat emitters that can survive temperatures at or above 1000°C have the potential to significantly improve the energy conversion efficiency of a PV cell by limiting the emission of photons with energies below the band gap energy of a photovoltaic cell. \nWaste heat can be a valuable source of energy if we can find a way to harvest it efficiently. Deviations from ideal absorption and ideal blackbody behavior lead to light losses. For selective emitters, any light emitted at wavelengths outside the bandgap energy of the photovoltaic system may not be efficiently converted, reducing efficiency. In particular, it is difficult to avoid emission associated with phonon resonance for wavelengths in the deep infrared, which cannot be practically converted. An ideal emitter would not emit light at wavelengths other than the bandgap energy, and much TFP research is devoted to designing emitters that approximate better this narrow emission spectrum. \nTPV systems usually consist of a heat source, a radiator and a waste heat removal system. TFV cells are placed between the emitter, often a metal or similar block, and the cooling system, often a passive radiator. \nEfficiency, heat resistance and cost are the three main factors for choosing a TPF emitter. The efficiency is determined by the absorbed energy relative to the incoming radiation. High temperature operation is critical because efficiency increases with operating temperature. As the temperature of the emitter increases, the radiation of the black body shifts toward shorter waves, which allows for more efficient absorption by photocells. This paper demonstrates the feasibility of using materials such as platinum, gold, and nichrome as a metal component in a metamaterial emitter with respect to their absorption and thermal stability.","PeriodicalId":41675,"journal":{"name":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","volume":"95 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of various materials as a metal component in a metamaterial thermophotovoltaic emitter\",\"authors\":\"M.A. Yasnohorodskyi\",\"doi\":\"10.30837/rt.2022.3.210.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermophotovoltaics (TPV) is a process by which photons emitted by a heat emitter are converted into electrical energy by a photovoltaic cell. Selective heat emitters that can survive temperatures at or above 1000°C have the potential to significantly improve the energy conversion efficiency of a PV cell by limiting the emission of photons with energies below the band gap energy of a photovoltaic cell. \\nWaste heat can be a valuable source of energy if we can find a way to harvest it efficiently. Deviations from ideal absorption and ideal blackbody behavior lead to light losses. For selective emitters, any light emitted at wavelengths outside the bandgap energy of the photovoltaic system may not be efficiently converted, reducing efficiency. In particular, it is difficult to avoid emission associated with phonon resonance for wavelengths in the deep infrared, which cannot be practically converted. An ideal emitter would not emit light at wavelengths other than the bandgap energy, and much TFP research is devoted to designing emitters that approximate better this narrow emission spectrum. \\nTPV systems usually consist of a heat source, a radiator and a waste heat removal system. TFV cells are placed between the emitter, often a metal or similar block, and the cooling system, often a passive radiator. \\nEfficiency, heat resistance and cost are the three main factors for choosing a TPF emitter. The efficiency is determined by the absorbed energy relative to the incoming radiation. High temperature operation is critical because efficiency increases with operating temperature. As the temperature of the emitter increases, the radiation of the black body shifts toward shorter waves, which allows for more efficient absorption by photocells. This paper demonstrates the feasibility of using materials such as platinum, gold, and nichrome as a metal component in a metamaterial emitter with respect to their absorption and thermal stability.\",\"PeriodicalId\":41675,\"journal\":{\"name\":\"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30837/rt.2022.3.210.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30837/rt.2022.3.210.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

热光伏(TPV)是一种将热发射器发射的光子通过光伏电池转换成电能的过程。能够在1000°C或以上的温度下存活的选择性热发射器具有通过限制能量低于光伏电池带隙能量的光子的发射来显着提高光伏电池的能量转换效率的潜力。如果我们能找到一种有效地收集废热的方法,废热可以成为一种宝贵的能源。偏离理想吸收和理想黑体行为会导致光损失。对于选择性发射体,在光伏系统带隙能量以外的波长发射的任何光都可能无法有效转换,从而降低效率。特别是,难以避免与深红外波长声子共振相关的发射,这无法实际转换。理想的发射体不会发射除带隙能量以外的波长的光,许多TFP研究致力于设计更接近这一窄发射光谱的发射体。TPV系统通常由热源、散热器和废热排出系统组成。TFV电池被放置在发射器(通常是金属或类似的块)和冷却系统(通常是被动散热器)之间。效率、耐热性和成本是选择TPF发射极的三个主要因素。效率是由吸收的能量与入射辐射的比值决定的。高温操作是至关重要的,因为效率随着操作温度的提高而提高。随着发射体温度的升高,黑体的辐射转向短波,这使得光电池更有效地吸收。本文论证了在超材料发射器中使用铂、金和镍铬等材料作为金属组件的可行性,以及它们的吸收率和热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of various materials as a metal component in a metamaterial thermophotovoltaic emitter
Thermophotovoltaics (TPV) is a process by which photons emitted by a heat emitter are converted into electrical energy by a photovoltaic cell. Selective heat emitters that can survive temperatures at or above 1000°C have the potential to significantly improve the energy conversion efficiency of a PV cell by limiting the emission of photons with energies below the band gap energy of a photovoltaic cell. Waste heat can be a valuable source of energy if we can find a way to harvest it efficiently. Deviations from ideal absorption and ideal blackbody behavior lead to light losses. For selective emitters, any light emitted at wavelengths outside the bandgap energy of the photovoltaic system may not be efficiently converted, reducing efficiency. In particular, it is difficult to avoid emission associated with phonon resonance for wavelengths in the deep infrared, which cannot be practically converted. An ideal emitter would not emit light at wavelengths other than the bandgap energy, and much TFP research is devoted to designing emitters that approximate better this narrow emission spectrum. TPV systems usually consist of a heat source, a radiator and a waste heat removal system. TFV cells are placed between the emitter, often a metal or similar block, and the cooling system, often a passive radiator. Efficiency, heat resistance and cost are the three main factors for choosing a TPF emitter. The efficiency is determined by the absorbed energy relative to the incoming radiation. High temperature operation is critical because efficiency increases with operating temperature. As the temperature of the emitter increases, the radiation of the black body shifts toward shorter waves, which allows for more efficient absorption by photocells. This paper demonstrates the feasibility of using materials such as platinum, gold, and nichrome as a metal component in a metamaterial emitter with respect to their absorption and thermal stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia
Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信