{"title":"SARS-CoV-2病毒转录物中n6 -甲基腺苷(m6A) RNA甲基化的计算预测","authors":"Qingru Xu, Xiangyu Wu, Jia Meng","doi":"10.1145/3469678.3469689","DOIUrl":null,"url":null,"abstract":"SARS-CoV-2 caused atypical pneumonia (COVID-19) is an ongoing pandemic that seriously threat the global public health. Many people die from this disease with severe symptoms. The most prevalent m6A RNA modification may be involved in by assisting the virus escaping from the host cell immune system attack. We provided here the first computational prediction study of RNA methylation sites in SARS-CoV-2. Based on virus sequence information, we predict the potential virus m6A sites and hope to make anyhow contributions to this unprecedented situation. As a result, we found 27 most frequent m6A sequences (41 bp) in SARS-CoV-2, and two of them are quite near to the spike protein stop codon position.","PeriodicalId":22513,"journal":{"name":"The Fifth International Conference on Biological Information and Biomedical Engineering","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Prediction of N6-methyladenosine (m6A) RNA Methylation in SARS-CoV-2 Viral Transcripts\",\"authors\":\"Qingru Xu, Xiangyu Wu, Jia Meng\",\"doi\":\"10.1145/3469678.3469689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SARS-CoV-2 caused atypical pneumonia (COVID-19) is an ongoing pandemic that seriously threat the global public health. Many people die from this disease with severe symptoms. The most prevalent m6A RNA modification may be involved in by assisting the virus escaping from the host cell immune system attack. We provided here the first computational prediction study of RNA methylation sites in SARS-CoV-2. Based on virus sequence information, we predict the potential virus m6A sites and hope to make anyhow contributions to this unprecedented situation. As a result, we found 27 most frequent m6A sequences (41 bp) in SARS-CoV-2, and two of them are quite near to the spike protein stop codon position.\",\"PeriodicalId\":22513,\"journal\":{\"name\":\"The Fifth International Conference on Biological Information and Biomedical Engineering\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Fifth International Conference on Biological Information and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469678.3469689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fifth International Conference on Biological Information and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469678.3469689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Prediction of N6-methyladenosine (m6A) RNA Methylation in SARS-CoV-2 Viral Transcripts
SARS-CoV-2 caused atypical pneumonia (COVID-19) is an ongoing pandemic that seriously threat the global public health. Many people die from this disease with severe symptoms. The most prevalent m6A RNA modification may be involved in by assisting the virus escaping from the host cell immune system attack. We provided here the first computational prediction study of RNA methylation sites in SARS-CoV-2. Based on virus sequence information, we predict the potential virus m6A sites and hope to make anyhow contributions to this unprecedented situation. As a result, we found 27 most frequent m6A sequences (41 bp) in SARS-CoV-2, and two of them are quite near to the spike protein stop codon position.