应用于机器学习驱动的IS可用性问题发现的源数据和目标数据映射

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
O. Ņikiforova, Vitaly M. Zabiniako, Jurijs Kornienko, M. Gasparoviča-Asīte, Amanda Silina
{"title":"应用于机器学习驱动的IS可用性问题发现的源数据和目标数据映射","authors":"O. Ņikiforova, Vitaly M. Zabiniako, Jurijs Kornienko, M. Gasparoviča-Asīte, Amanda Silina","doi":"10.2478/acss-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract Improving IS (Information System) end-user experience is one of the most important tasks in the analysis of end-users behaviour, evaluation and identification of its improvement potential. However, the application of Machine Learning methods for the UX (User Experience) usability and effic iency improvement is not widely researched. In the context of the usability analysis, the information about behaviour of end-users could be used as an input, while in the output data the focus should be made on non-trivial or difficult attention-grabbing events and scenarios. The goal of this paper is to identify which data potentially can serve as an input for Machine Learning methods (and accordingly graph theory, transformation methods, etc.), to define dependency between these data and desired output, which can help to apply Machine Learning / graph algorithms to user activity records.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"56 1","pages":"22 - 30"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mapping of Source and Target Data for Application to Machine Learning Driven Discovery of IS Usability Problems\",\"authors\":\"O. Ņikiforova, Vitaly M. Zabiniako, Jurijs Kornienko, M. Gasparoviča-Asīte, Amanda Silina\",\"doi\":\"10.2478/acss-2021-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Improving IS (Information System) end-user experience is one of the most important tasks in the analysis of end-users behaviour, evaluation and identification of its improvement potential. However, the application of Machine Learning methods for the UX (User Experience) usability and effic iency improvement is not widely researched. In the context of the usability analysis, the information about behaviour of end-users could be used as an input, while in the output data the focus should be made on non-trivial or difficult attention-grabbing events and scenarios. The goal of this paper is to identify which data potentially can serve as an input for Machine Learning methods (and accordingly graph theory, transformation methods, etc.), to define dependency between these data and desired output, which can help to apply Machine Learning / graph algorithms to user activity records.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"56 1\",\"pages\":\"22 - 30\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

改进信息系统的用户体验是分析最终用户行为、评价和识别其改进潜力的重要任务之一。然而,机器学习方法在用户体验可用性和效率提升方面的应用研究并不广泛。在可用性分析的范围内,有关最终用户行为的信息可以用作输入,而在输出数据中,重点应放在重要或困难的引人注目的事件和场景上。本文的目标是确定哪些数据可能作为机器学习方法(以及相应的图论、转换方法等)的输入,定义这些数据与期望输出之间的依赖关系,这有助于将机器学习/图算法应用于用户活动记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping of Source and Target Data for Application to Machine Learning Driven Discovery of IS Usability Problems
Abstract Improving IS (Information System) end-user experience is one of the most important tasks in the analysis of end-users behaviour, evaluation and identification of its improvement potential. However, the application of Machine Learning methods for the UX (User Experience) usability and effic iency improvement is not widely researched. In the context of the usability analysis, the information about behaviour of end-users could be used as an input, while in the output data the focus should be made on non-trivial or difficult attention-grabbing events and scenarios. The goal of this paper is to identify which data potentially can serve as an input for Machine Learning methods (and accordingly graph theory, transformation methods, etc.), to define dependency between these data and desired output, which can help to apply Machine Learning / graph algorithms to user activity records.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信