一类有源标量方程的平面贴片问题中粒子轨迹的解析性

J. M. Burgués, J. Mateu
{"title":"一类有源标量方程的平面贴片问题中粒子轨迹的解析性","authors":"J. M. Burgués, J. Mateu","doi":"10.3934/dcds.2022005","DOIUrl":null,"url":null,"abstract":"We prove analyticity in time of the particle trajectories associated with the solutions of some transport equations when the initial condition is the characteristic function of a regular bounded domain. These results are obtained from a detailed study of the Beurling transform, that represents a derivative of the velocity field. The precise estimates obtained for the solutions of an equation satisfied by the Lagrangian flow, are a key point in the development.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the analyticity of the trajectories of the particles in the planar patch problem for some active scalar equations\",\"authors\":\"J. M. Burgués, J. Mateu\",\"doi\":\"10.3934/dcds.2022005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove analyticity in time of the particle trajectories associated with the solutions of some transport equations when the initial condition is the characteristic function of a regular bounded domain. These results are obtained from a detailed study of the Beurling transform, that represents a derivative of the velocity field. The precise estimates obtained for the solutions of an equation satisfied by the Lagrangian flow, are a key point in the development.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2022005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2022005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了当初始条件为正则有界域的特征函数时,与若干输运方程解相关的粒子轨迹的时间解析性。这些结果是通过对表示速度场导数的伯林变换的详细研究得到的。拉格朗日流所满足的方程解的精确估计是发展的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the analyticity of the trajectories of the particles in the planar patch problem for some active scalar equations
We prove analyticity in time of the particle trajectories associated with the solutions of some transport equations when the initial condition is the characteristic function of a regular bounded domain. These results are obtained from a detailed study of the Beurling transform, that represents a derivative of the velocity field. The precise estimates obtained for the solutions of an equation satisfied by the Lagrangian flow, are a key point in the development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信