实旗流形中的测地线轨道空间

Brian Grajales, L. Grama, Caio J. C. Negreiros
{"title":"实旗流形中的测地线轨道空间","authors":"Brian Grajales, L. Grama, Caio J. C. Negreiros","doi":"10.4310/CAG.2020.V28.N8.A7","DOIUrl":null,"url":null,"abstract":"We describe the invariant metrics on real flag manifolds and classify those with the following property: every geodesic is the orbit of a one-parameter subgroup. Such a metric is called g.o. (geodesic orbit). In contrast to the complex case, on real flag manifolds the isotropy representation can have equivalent submodules, which makes invariant metrics depend on more parameters and allows us to find more cases in which non-trivial g.o. metrics exist.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Geodesic orbit spaces in real flag manifolds\",\"authors\":\"Brian Grajales, L. Grama, Caio J. C. Negreiros\",\"doi\":\"10.4310/CAG.2020.V28.N8.A7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the invariant metrics on real flag manifolds and classify those with the following property: every geodesic is the orbit of a one-parameter subgroup. Such a metric is called g.o. (geodesic orbit). In contrast to the complex case, on real flag manifolds the isotropy representation can have equivalent submodules, which makes invariant metrics depend on more parameters and allows us to find more cases in which non-trivial g.o. metrics exist.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CAG.2020.V28.N8.A7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CAG.2020.V28.N8.A7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们描述了实标志流形上的不变度量,并根据以下性质对它们进行了分类:每个测地线都是一个单参数子群的轨道。这样的度量被称为g.o(测地线轨道)。与复情况相比,在实标志流形上,各向同性表示可以有等价的子模块,这使得不变度量依赖于更多的参数,并允许我们找到更多存在非平凡g.o.度量的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic orbit spaces in real flag manifolds
We describe the invariant metrics on real flag manifolds and classify those with the following property: every geodesic is the orbit of a one-parameter subgroup. Such a metric is called g.o. (geodesic orbit). In contrast to the complex case, on real flag manifolds the isotropy representation can have equivalent submodules, which makes invariant metrics depend on more parameters and allows us to find more cases in which non-trivial g.o. metrics exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信