{"title":"智能RGB照明系统模糊控制器的研制","authors":"N. Velasco, J. R. D. del Rosario, A. Bandala","doi":"10.1109/HNICEM48295.2019.9072854","DOIUrl":null,"url":null,"abstract":"The smart RGB lighting system is a smart lighting system built on a fuzzy logic controller that adjusts the RGB lighting to suit the environment. The concept aims to make lighting systems more efficient in power, and intelligent with the color adjustment from the fuzzy system. This research aims to develop a fuzzy logic controller that aims to control the output RGB light intensity based on the current luminance of the environment and the activity color classification within the room. The membership functions and rules in the system were designed in MATLAB Fuzzy Logic Designer. The system was tested with test inputs into the system.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a Fuzzy Logic Controller for a Smart RGB Lighting System\",\"authors\":\"N. Velasco, J. R. D. del Rosario, A. Bandala\",\"doi\":\"10.1109/HNICEM48295.2019.9072854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart RGB lighting system is a smart lighting system built on a fuzzy logic controller that adjusts the RGB lighting to suit the environment. The concept aims to make lighting systems more efficient in power, and intelligent with the color adjustment from the fuzzy system. This research aims to develop a fuzzy logic controller that aims to control the output RGB light intensity based on the current luminance of the environment and the activity color classification within the room. The membership functions and rules in the system were designed in MATLAB Fuzzy Logic Designer. The system was tested with test inputs into the system.\",\"PeriodicalId\":6733,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM48295.2019.9072854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Fuzzy Logic Controller for a Smart RGB Lighting System
The smart RGB lighting system is a smart lighting system built on a fuzzy logic controller that adjusts the RGB lighting to suit the environment. The concept aims to make lighting systems more efficient in power, and intelligent with the color adjustment from the fuzzy system. This research aims to develop a fuzzy logic controller that aims to control the output RGB light intensity based on the current luminance of the environment and the activity color classification within the room. The membership functions and rules in the system were designed in MATLAB Fuzzy Logic Designer. The system was tested with test inputs into the system.