一个R包拟合多元污染正态分布的简约混合

A. Punzo, A. Mazza, P. McNicholas
{"title":"一个R包拟合多元污染正态分布的简约混合","authors":"A. Punzo, A. Mazza, P. McNicholas","doi":"10.18637/JSS.V085.I10","DOIUrl":null,"url":null,"abstract":"We introduce the R package ContaminatedMixt, conceived to disseminate the use of mixtures of multivariate contaminated normal distributions as a tool for robust clustering and classification under the common assumption of elliptically contoured groups. Thirteen variants of the model are also implemented to introduce parsimony. The expectation-conditional maximization algorithm is adopted to obtain maximum likelihood parameter estimates, and likelihood-based model selection criteria are used to select the model and the number of groups. Parallel computation can be used on multicore PCs and computer clusters, when several models have to be fitted. Differently from the more popular mixtures of multivariate normal and t distributions, this approach also allows for automatic detection of mild outliers via the maximum a posteriori probabilities procedure. To exemplify the use of the package, applications to artificial and real data are presented.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions\",\"authors\":\"A. Punzo, A. Mazza, P. McNicholas\",\"doi\":\"10.18637/JSS.V085.I10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the R package ContaminatedMixt, conceived to disseminate the use of mixtures of multivariate contaminated normal distributions as a tool for robust clustering and classification under the common assumption of elliptically contoured groups. Thirteen variants of the model are also implemented to introduce parsimony. The expectation-conditional maximization algorithm is adopted to obtain maximum likelihood parameter estimates, and likelihood-based model selection criteria are used to select the model and the number of groups. Parallel computation can be used on multicore PCs and computer clusters, when several models have to be fitted. Differently from the more popular mixtures of multivariate normal and t distributions, this approach also allows for automatic detection of mild outliers via the maximum a posteriori probabilities procedure. To exemplify the use of the package, applications to artificial and real data are presented.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V085.I10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V085.I10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

我们介绍了R包污染型混合,旨在传播多元污染正态分布的混合物的使用,作为在椭圆轮廓群的共同假设下稳健聚类和分类的工具。该模型还实现了13种变体,以引入节俭。采用期望-条件最大化算法获得最大似然参数估计,采用基于似然的模型选择准则选择模型和组数。并行计算可以用于多核pc机和计算机集群,当多个模型必须拟合时。与更流行的多元正态分布和t分布的混合不同,这种方法还允许通过最大后验概率过程自动检测轻度异常值。为了举例说明该包的使用,给出了对人工数据和实际数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions
We introduce the R package ContaminatedMixt, conceived to disseminate the use of mixtures of multivariate contaminated normal distributions as a tool for robust clustering and classification under the common assumption of elliptically contoured groups. Thirteen variants of the model are also implemented to introduce parsimony. The expectation-conditional maximization algorithm is adopted to obtain maximum likelihood parameter estimates, and likelihood-based model selection criteria are used to select the model and the number of groups. Parallel computation can be used on multicore PCs and computer clusters, when several models have to be fitted. Differently from the more popular mixtures of multivariate normal and t distributions, this approach also allows for automatic detection of mild outliers via the maximum a posteriori probabilities procedure. To exemplify the use of the package, applications to artificial and real data are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信