里德索罗门码的代数软判决译码的指数误差界

N. Ratnakar, R. Koetter
{"title":"里德索罗门码的代数软判决译码的指数误差界","authors":"N. Ratnakar, R. Koetter","doi":"10.1109/ISIT.2004.1365455","DOIUrl":null,"url":null,"abstract":"This paper describes an algebraic soft decision (ASD) decoding algorithms of Reed Solomon codes, which assigns suitable weighted-interpolation and factorization algorithms. The probability of exponential error with an output alphabet multiplicity matrix M is used for decoding the received symbols when ASD algorithm is upper bound. Under the probability of error metric, these algorithms perform better in discrete, memoryless channel.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Exponential error bounds for algebraic soft-decision decoding of Reed Solomon codes\",\"authors\":\"N. Ratnakar, R. Koetter\",\"doi\":\"10.1109/ISIT.2004.1365455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an algebraic soft decision (ASD) decoding algorithms of Reed Solomon codes, which assigns suitable weighted-interpolation and factorization algorithms. The probability of exponential error with an output alphabet multiplicity matrix M is used for decoding the received symbols when ASD algorithm is upper bound. Under the probability of error metric, these algorithms perform better in discrete, memoryless channel.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种Reed Solomon码的代数软判决译码算法,并给出了合适的加权插值和分解算法。在ASD算法为上界的情况下,利用输出字母多重矩阵M的指数误差概率对接收到的符号进行解码。在误差度量的概率下,这些算法在离散的、无记忆的信道中表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential error bounds for algebraic soft-decision decoding of Reed Solomon codes
This paper describes an algebraic soft decision (ASD) decoding algorithms of Reed Solomon codes, which assigns suitable weighted-interpolation and factorization algorithms. The probability of exponential error with an output alphabet multiplicity matrix M is used for decoding the received symbols when ASD algorithm is upper bound. Under the probability of error metric, these algorithms perform better in discrete, memoryless channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信