高阶非齐次线性差分方程的亚纯解

Q4 Mathematics
B. Belaïdi, Rachid Bellaama
{"title":"高阶非齐次线性差分方程的亚纯解","authors":"B. Belaïdi, Rachid Bellaama","doi":"10.31926/but.mif.2020.13.62.2.6","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the growth of meromorphic solutions of nonhomogeneous linear difference equation A_n(z)f(z + c_n) + · · · + A_1(z)f(z + c_1) + A_0(z)f(z) = A_{n+1}(z), where A_{n+1 (z), · · · , A0 (z) are (entire) or meromorphic functions and c_j (1, · · · , n) are non-zero distinct complex numbers. Under some conditions on the (lower) order and the (lower) type of the coefficients, we obtain estimates on the lower bound of the order of meromorphic solutions of the above equation. We extend early results due to Luo and Zheng.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Meromorphic solutions of higher order non-homogeneous linear difference equations\",\"authors\":\"B. Belaïdi, Rachid Bellaama\",\"doi\":\"10.31926/but.mif.2020.13.62.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the growth of meromorphic solutions of nonhomogeneous linear difference equation A_n(z)f(z + c_n) + · · · + A_1(z)f(z + c_1) + A_0(z)f(z) = A_{n+1}(z), where A_{n+1 (z), · · · , A0 (z) are (entire) or meromorphic functions and c_j (1, · · · , n) are non-zero distinct complex numbers. Under some conditions on the (lower) order and the (lower) type of the coefficients, we obtain estimates on the lower bound of the order of meromorphic solutions of the above equation. We extend early results due to Luo and Zheng.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2020.13.62.2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2020.13.62.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了非齐次线性差分方程A_n(z)f(z + c_n) +···+ A_1(z)f(z + c_1) + A_0(z)f(z) = A_{n+1}(z)的亚纯解的增长,其中A_{n+1 (z),···,A0 (z)为(整)或亚纯函数,c_j(1,···,n)为非零异复数。在系数的(下)阶和(下)型的某些条件下,我们得到了上述方程亚纯解的阶下界的估计。由于罗和郑的原因,我们延长了早期的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meromorphic solutions of higher order non-homogeneous linear difference equations
In this paper, we investigate the growth of meromorphic solutions of nonhomogeneous linear difference equation A_n(z)f(z + c_n) + · · · + A_1(z)f(z + c_1) + A_0(z)f(z) = A_{n+1}(z), where A_{n+1 (z), · · · , A0 (z) are (entire) or meromorphic functions and c_j (1, · · · , n) are non-zero distinct complex numbers. Under some conditions on the (lower) order and the (lower) type of the coefficients, we obtain estimates on the lower bound of the order of meromorphic solutions of the above equation. We extend early results due to Luo and Zheng.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信