{"title":"高阶非齐次线性差分方程的亚纯解","authors":"B. Belaïdi, Rachid Bellaama","doi":"10.31926/but.mif.2020.13.62.2.6","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the growth of meromorphic solutions of nonhomogeneous linear difference equation A_n(z)f(z + c_n) + · · · + A_1(z)f(z + c_1) + A_0(z)f(z) = A_{n+1}(z), where A_{n+1 (z), · · · , A0 (z) are (entire) or meromorphic functions and c_j (1, · · · , n) are non-zero distinct complex numbers. Under some conditions on the (lower) order and the (lower) type of the coefficients, we obtain estimates on the lower bound of the order of meromorphic solutions of the above equation. We extend early results due to Luo and Zheng.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Meromorphic solutions of higher order non-homogeneous linear difference equations\",\"authors\":\"B. Belaïdi, Rachid Bellaama\",\"doi\":\"10.31926/but.mif.2020.13.62.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the growth of meromorphic solutions of nonhomogeneous linear difference equation A_n(z)f(z + c_n) + · · · + A_1(z)f(z + c_1) + A_0(z)f(z) = A_{n+1}(z), where A_{n+1 (z), · · · , A0 (z) are (entire) or meromorphic functions and c_j (1, · · · , n) are non-zero distinct complex numbers. Under some conditions on the (lower) order and the (lower) type of the coefficients, we obtain estimates on the lower bound of the order of meromorphic solutions of the above equation. We extend early results due to Luo and Zheng.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2020.13.62.2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2020.13.62.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Meromorphic solutions of higher order non-homogeneous linear difference equations
In this paper, we investigate the growth of meromorphic solutions of nonhomogeneous linear difference equation A_n(z)f(z + c_n) + · · · + A_1(z)f(z + c_1) + A_0(z)f(z) = A_{n+1}(z), where A_{n+1 (z), · · · , A0 (z) are (entire) or meromorphic functions and c_j (1, · · · , n) are non-zero distinct complex numbers. Under some conditions on the (lower) order and the (lower) type of the coefficients, we obtain estimates on the lower bound of the order of meromorphic solutions of the above equation. We extend early results due to Luo and Zheng.