经典电荷的最小能量构型:大N渐近性

Stéphane Capet, G. Friesecke
{"title":"经典电荷的最小能量构型:大N渐近性","authors":"Stéphane Capet, G. Friesecke","doi":"10.1093/amrx/abp002","DOIUrl":null,"url":null,"abstract":"We study the minimum energy configurations of N particles in of charge −1 (“electrons”) in the potential of M particles of charges Zα > 0 (“atomic nuclei”). In a suitable large-N limit, we determine the asymptotic electron distribution explicitly, showing in particular that the number of electrons surrounding each nucleus is asymptotic to the nuclear charge (“screening”). The proof proceeds by establishing, via Gamma-convergence, a coarse-grained variational principle for the limit distribution, which can be solved explicitly.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"4 1","pages":"47-73"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Minimum Energy Configurations of Classical Charges: Large N Asymptotics\",\"authors\":\"Stéphane Capet, G. Friesecke\",\"doi\":\"10.1093/amrx/abp002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the minimum energy configurations of N particles in of charge −1 (“electrons”) in the potential of M particles of charges Zα > 0 (“atomic nuclei”). In a suitable large-N limit, we determine the asymptotic electron distribution explicitly, showing in particular that the number of electrons surrounding each nucleus is asymptotic to the nuclear charge (“screening”). The proof proceeds by establishing, via Gamma-convergence, a coarse-grained variational principle for the limit distribution, which can be solved explicitly.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"4 1\",\"pages\":\"47-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/amrx/abp002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/amrx/abp002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们研究了带- 1电荷的N个粒子(“电子”)在带Zα >电荷的M个粒子(“原子核”)的势中的最小能量构型。在合适的大n极限下,我们明确地确定了渐近电子分布,特别是表明每个原子核周围的电子数与核电荷渐近(“筛选”)。通过伽玛收敛,建立了一个可以显式求解的极限分布的粗粒度变分原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum Energy Configurations of Classical Charges: Large N Asymptotics
We study the minimum energy configurations of N particles in of charge −1 (“electrons”) in the potential of M particles of charges Zα > 0 (“atomic nuclei”). In a suitable large-N limit, we determine the asymptotic electron distribution explicitly, showing in particular that the number of electrons surrounding each nucleus is asymptotic to the nuclear charge (“screening”). The proof proceeds by establishing, via Gamma-convergence, a coarse-grained variational principle for the limit distribution, which can be solved explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信