稀疏网络下区域垂直电离层一致模式及其在PPP-RTK中的应用

IF 3.1 3区 地球科学 Q1 ENGINEERING, AEROSPACE
S. Lyu, Yang Xiang, Tiantian Tang, Ling Pei, Wenxian Yu, T. Truong
{"title":"稀疏网络下区域垂直电离层一致模式及其在PPP-RTK中的应用","authors":"S. Lyu, Yang Xiang, Tiantian Tang, Ling Pei, Wenxian Yu, T. Truong","doi":"10.33012/navi.568","DOIUrl":null,"url":null,"abstract":"Ionospheric augmentation is one of the most important dependences of PPP-RTK. Because of the dispersive features of the ionosphere, the ionospheric information is usually coupled with satellite-and receiver-related biases. This will pose a hidden trouble of inconsistent ionospheric corrections if different numbers of reference stations are involved in calculation. In this paper, we aimed at introducing a consistent regional vertical ionospheric model (RVIM) by estimating receiver biases. We first presented the inconsistent ionospheric corrections under sparse networks. Then the RVIM is compared with the International GNSS Service (IGS) final global ionospheric map (GIM) product, and the average of differences between them is 1.13 TECU. Furthermore, the slant ionospheric corrections were employed as a reference to evaluate both RVIM and GIM. The mean RMS values are 1.48 and 2.23 TECU for the RVIM and GIM, respectively. Finally, we applied the RVIM into PPP-RTK. Results indicate that the PPP-RTK with RVIM constraints achieves improvements in horizontal errors, vertical errors, and convergence time by 43.45, 29.3, and 22.6% under the 68% confidence level, compared with the conventional PPP-AR.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Consistent Regional Vertical Ionospheric Model and Application in PPP-RTK Under Sparse Networks\",\"authors\":\"S. Lyu, Yang Xiang, Tiantian Tang, Ling Pei, Wenxian Yu, T. Truong\",\"doi\":\"10.33012/navi.568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionospheric augmentation is one of the most important dependences of PPP-RTK. Because of the dispersive features of the ionosphere, the ionospheric information is usually coupled with satellite-and receiver-related biases. This will pose a hidden trouble of inconsistent ionospheric corrections if different numbers of reference stations are involved in calculation. In this paper, we aimed at introducing a consistent regional vertical ionospheric model (RVIM) by estimating receiver biases. We first presented the inconsistent ionospheric corrections under sparse networks. Then the RVIM is compared with the International GNSS Service (IGS) final global ionospheric map (GIM) product, and the average of differences between them is 1.13 TECU. Furthermore, the slant ionospheric corrections were employed as a reference to evaluate both RVIM and GIM. The mean RMS values are 1.48 and 2.23 TECU for the RVIM and GIM, respectively. Finally, we applied the RVIM into PPP-RTK. Results indicate that the PPP-RTK with RVIM constraints achieves improvements in horizontal errors, vertical errors, and convergence time by 43.45, 29.3, and 22.6% under the 68% confidence level, compared with the conventional PPP-AR.\",\"PeriodicalId\":56075,\"journal\":{\"name\":\"Navigation-Journal of the Institute of Navigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Navigation-Journal of the Institute of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33012/navi.568\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.568","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

电离层增强是PPP-RTK最重要的依赖之一。由于电离层的色散特性,电离层信息通常与卫星和接收机相关的偏差相结合。如果在计算中使用不同数量的参考站,就会造成电离层校正不一致的隐患。在本文中,我们旨在通过估计接收器偏差引入一致的区域垂直电离层模型(RVIM)。我们首先提出了稀疏网络下的不一致电离层改正。然后将RVIM与国际GNSS服务(IGS)最终全球电离层图(GIM)产品进行比较,两者的平均差值为1.13 TECU。此外,还利用电离层的倾斜修正作为参考来评估RVIM和GIM。RVIM和GIM的平均RMS值分别为1.48和2.23 TECU。最后,将RVIM应用于PPP-RTK。结果表明,在68%置信水平下,RVIM约束下的PPP-RTK在水平误差、垂直误差和收敛时间上分别比常规PPP-AR提高了43.45%、29.3%和22.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Consistent Regional Vertical Ionospheric Model and Application in PPP-RTK Under Sparse Networks
Ionospheric augmentation is one of the most important dependences of PPP-RTK. Because of the dispersive features of the ionosphere, the ionospheric information is usually coupled with satellite-and receiver-related biases. This will pose a hidden trouble of inconsistent ionospheric corrections if different numbers of reference stations are involved in calculation. In this paper, we aimed at introducing a consistent regional vertical ionospheric model (RVIM) by estimating receiver biases. We first presented the inconsistent ionospheric corrections under sparse networks. Then the RVIM is compared with the International GNSS Service (IGS) final global ionospheric map (GIM) product, and the average of differences between them is 1.13 TECU. Furthermore, the slant ionospheric corrections were employed as a reference to evaluate both RVIM and GIM. The mean RMS values are 1.48 and 2.23 TECU for the RVIM and GIM, respectively. Finally, we applied the RVIM into PPP-RTK. Results indicate that the PPP-RTK with RVIM constraints achieves improvements in horizontal errors, vertical errors, and convergence time by 43.45, 29.3, and 22.6% under the 68% confidence level, compared with the conventional PPP-AR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Navigation-Journal of the Institute of Navigation
Navigation-Journal of the Institute of Navigation ENGINEERING, AEROSPACE-REMOTE SENSING
CiteScore
5.60
自引率
13.60%
发文量
31
期刊介绍: NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信