L. Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, Yin Yang
{"title":"内点超弹性的二阶模板下降","authors":"L. Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, Yin Yang","doi":"10.1145/3592104","DOIUrl":null,"url":null,"abstract":"In this paper, we present a GPU algorithm for finite element hyperelastic simulation. We show that the interior-point method, known to be effective for robust collision resolution, can be coupled with non-Newton procedures and be massively sped up on the GPU. Newton's method has been widely chosen for the interior-point family, which fully solves a linear system at each step. After that, the active set associated with collision/contact constraints is updated. Mimicking this routine using a non-Newton optimization (like gradient descent or ADMM) unfortunately does not deliver expected accelerations. This is because the barrier functions employed in an interior-point method need to be updated at every iteration to strictly confine the search to the feasible region. The associated cost (e.g., per-iteration CCD) quickly overweights the benefit brought by the GPU, and a new parallelism modality is needed. Our algorithm is inspired by the domain decomposition method and designed to move interior-point-related computations to local domains as much as possible. We minimize the size of each domain (i.e., a stencil) by restricting it to a single element, so as to fully exploit the capacity of modern GPUs. The stencil-level results are integrated into a global update using a novel hybrid sweep scheme. Our algorithm is locally second-order offering better convergence. It enables simulation acceleration of up to two orders over its CPU counterpart. We demonstrate the scalability, robustness, efficiency, and quality of our algorithm in a variety of simulation scenarios with complex and detailed collision geometries.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"132 1","pages":"1 - 16"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second-order Stencil Descent for Interior-point Hyperelasticity\",\"authors\":\"L. Lan, Minchen Li, Chenfanfu Jiang, Huamin Wang, Yin Yang\",\"doi\":\"10.1145/3592104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a GPU algorithm for finite element hyperelastic simulation. We show that the interior-point method, known to be effective for robust collision resolution, can be coupled with non-Newton procedures and be massively sped up on the GPU. Newton's method has been widely chosen for the interior-point family, which fully solves a linear system at each step. After that, the active set associated with collision/contact constraints is updated. Mimicking this routine using a non-Newton optimization (like gradient descent or ADMM) unfortunately does not deliver expected accelerations. This is because the barrier functions employed in an interior-point method need to be updated at every iteration to strictly confine the search to the feasible region. The associated cost (e.g., per-iteration CCD) quickly overweights the benefit brought by the GPU, and a new parallelism modality is needed. Our algorithm is inspired by the domain decomposition method and designed to move interior-point-related computations to local domains as much as possible. We minimize the size of each domain (i.e., a stencil) by restricting it to a single element, so as to fully exploit the capacity of modern GPUs. The stencil-level results are integrated into a global update using a novel hybrid sweep scheme. Our algorithm is locally second-order offering better convergence. It enables simulation acceleration of up to two orders over its CPU counterpart. We demonstrate the scalability, robustness, efficiency, and quality of our algorithm in a variety of simulation scenarios with complex and detailed collision geometries.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":\"132 1\",\"pages\":\"1 - 16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3592104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Second-order Stencil Descent for Interior-point Hyperelasticity
In this paper, we present a GPU algorithm for finite element hyperelastic simulation. We show that the interior-point method, known to be effective for robust collision resolution, can be coupled with non-Newton procedures and be massively sped up on the GPU. Newton's method has been widely chosen for the interior-point family, which fully solves a linear system at each step. After that, the active set associated with collision/contact constraints is updated. Mimicking this routine using a non-Newton optimization (like gradient descent or ADMM) unfortunately does not deliver expected accelerations. This is because the barrier functions employed in an interior-point method need to be updated at every iteration to strictly confine the search to the feasible region. The associated cost (e.g., per-iteration CCD) quickly overweights the benefit brought by the GPU, and a new parallelism modality is needed. Our algorithm is inspired by the domain decomposition method and designed to move interior-point-related computations to local domains as much as possible. We minimize the size of each domain (i.e., a stencil) by restricting it to a single element, so as to fully exploit the capacity of modern GPUs. The stencil-level results are integrated into a global update using a novel hybrid sweep scheme. Our algorithm is locally second-order offering better convergence. It enables simulation acceleration of up to two orders over its CPU counterpart. We demonstrate the scalability, robustness, efficiency, and quality of our algorithm in a variety of simulation scenarios with complex and detailed collision geometries.