Jonathan M. Branham, B. Myers, Zachary Garner, Dale Hamiton
{"title":"林地火灾效果机器学习映射中纹理作为空间上下文输入的评价","authors":"Jonathan M. Branham, B. Myers, Zachary Garner, Dale Hamiton","doi":"10.5121/sipij.2017.8501","DOIUrl":null,"url":null,"abstract":"A variety of machine learning algorithms have been used to map wildland fire effects, but previous attempts to map post-fire effects have been conducted using relatively low-resolution satellite imagery. Small unmanned aircraft systems (sUAS) provide opportunities to acquire imagery with much higher spatial resolution than is possible with satellites or manned aircraft. This effort investigates improvements achievable in the accuracy of post-fire effects mapping with machine learning algorithms that use hyperspatial (sub-decimeter) drone imagery. Spatial context using a variety of texture metrics were also evaluated in order to determine the inclusion of spatial context as an additional input to the analytic tools along with the three-color bands. This analysis shows that the addition of texture as an additional fourth input increases classifier accuracy when mapping post-fire effects.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"128 1","pages":"01-11"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evaluation of Texture as an Input of Spatial Context for Machine Learning Mapping of Wildland Fire Effects\",\"authors\":\"Jonathan M. Branham, B. Myers, Zachary Garner, Dale Hamiton\",\"doi\":\"10.5121/sipij.2017.8501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of machine learning algorithms have been used to map wildland fire effects, but previous attempts to map post-fire effects have been conducted using relatively low-resolution satellite imagery. Small unmanned aircraft systems (sUAS) provide opportunities to acquire imagery with much higher spatial resolution than is possible with satellites or manned aircraft. This effort investigates improvements achievable in the accuracy of post-fire effects mapping with machine learning algorithms that use hyperspatial (sub-decimeter) drone imagery. Spatial context using a variety of texture metrics were also evaluated in order to determine the inclusion of spatial context as an additional input to the analytic tools along with the three-color bands. This analysis shows that the addition of texture as an additional fourth input increases classifier accuracy when mapping post-fire effects.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"128 1\",\"pages\":\"01-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/sipij.2017.8501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/sipij.2017.8501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Texture as an Input of Spatial Context for Machine Learning Mapping of Wildland Fire Effects
A variety of machine learning algorithms have been used to map wildland fire effects, but previous attempts to map post-fire effects have been conducted using relatively low-resolution satellite imagery. Small unmanned aircraft systems (sUAS) provide opportunities to acquire imagery with much higher spatial resolution than is possible with satellites or manned aircraft. This effort investigates improvements achievable in the accuracy of post-fire effects mapping with machine learning algorithms that use hyperspatial (sub-decimeter) drone imagery. Spatial context using a variety of texture metrics were also evaluated in order to determine the inclusion of spatial context as an additional input to the analytic tools along with the three-color bands. This analysis shows that the addition of texture as an additional fourth input increases classifier accuracy when mapping post-fire effects.