Julian Varghese, C. Beierle, Nico Potyka, G. Kern-Isberner
{"title":"应用概率逻辑和最大熵原理对临床脑肿瘤数据进行分析","authors":"Julian Varghese, C. Beierle, Nico Potyka, G. Kern-Isberner","doi":"10.1109/CBMS.2013.6627826","DOIUrl":null,"url":null,"abstract":"Dealing with uncertainty that is inherently present in any medical domain, is one of the major challenges when designing a medical decision support system. We demonstrate how probabilistic logic can be used to design medical knowledge bases at the example of analysing clinical brain tumor data. We use MECoRe, a system implementing probabilistic conditional logic, to create a knowledge base BT that contains medical knowledge originating from both statistical data as well as from medical experts. Any incomplete or unspecified knowledge is completed by MECoRe in an information-theoretically optimal way by employing the principle of maximum entropy. BT is evaluated with respect to a series of queries regarding diagnosis and prognosis, using a real documented patient case.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":"39 1","pages":"401-404"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using probabilistic logic and the principle of maximum entropy for the analysis of clinical brain tumor data\",\"authors\":\"Julian Varghese, C. Beierle, Nico Potyka, G. Kern-Isberner\",\"doi\":\"10.1109/CBMS.2013.6627826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dealing with uncertainty that is inherently present in any medical domain, is one of the major challenges when designing a medical decision support system. We demonstrate how probabilistic logic can be used to design medical knowledge bases at the example of analysing clinical brain tumor data. We use MECoRe, a system implementing probabilistic conditional logic, to create a knowledge base BT that contains medical knowledge originating from both statistical data as well as from medical experts. Any incomplete or unspecified knowledge is completed by MECoRe in an information-theoretically optimal way by employing the principle of maximum entropy. BT is evaluated with respect to a series of queries regarding diagnosis and prognosis, using a real documented patient case.\",\"PeriodicalId\":20519,\"journal\":{\"name\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":\"39 1\",\"pages\":\"401-404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2013.6627826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using probabilistic logic and the principle of maximum entropy for the analysis of clinical brain tumor data
Dealing with uncertainty that is inherently present in any medical domain, is one of the major challenges when designing a medical decision support system. We demonstrate how probabilistic logic can be used to design medical knowledge bases at the example of analysing clinical brain tumor data. We use MECoRe, a system implementing probabilistic conditional logic, to create a knowledge base BT that contains medical knowledge originating from both statistical data as well as from medical experts. Any incomplete or unspecified knowledge is completed by MECoRe in an information-theoretically optimal way by employing the principle of maximum entropy. BT is evaluated with respect to a series of queries regarding diagnosis and prognosis, using a real documented patient case.