润滑油用CuO-ZnO纳米添加剂的合成与表征

Buddha Shrestha, H. Trital, A. Rajbhandari
{"title":"润滑油用CuO-ZnO纳米添加剂的合成与表征","authors":"Buddha Shrestha, H. Trital, A. Rajbhandari","doi":"10.3126/sw.v13i13.30504","DOIUrl":null,"url":null,"abstract":"A mixed metal oxide (CuO-ZnO) additives has been successfully synthesized in laboratory by co-precipitation technique. The optimum ratio of CuO and ZnO in mixed metal oxide was found to be 1:1. The sodium lauryl sulfate (SLS) has been used as surfactant. The obtained material was found to be crystalline having crystalline size of 18 nm. The stretching band in FTIR spectra at around 1072 cm-1 to 750 cm-1 and around 600 cm-1 indicates the presence of Zn-O and Cu-O bonds. As prepared nano-particles have been used as nano additive in base oil to improve physio-chemical parameters of lubricants. The results revealed that the additive blended base oil (lubricant) has shown excellent lubrication properties. The higher kinematic viscosity of 33.0504 and 6.0158 at 40°C and 100°C respectively showed that as prepared additive blended lubricant is of ISO-32 category according to ISO grading system for lubricants. Similarly, viscosity index was found to be improved from 101 to 129. The pour point was found to be significantly decreased from -6°C to -24°C. So it can be used as good pour point depressant and could be used even in the extreme cold environment condition. The flash point was found to be increased from 215°C to 220°C indicating that the prepared mixed metal oxide (CuO-ZnO) acts as flash point enhancer. The copper strip corrosion rating was found to be 1b for additive indicating the non corrosive nature. The absence of moisture and pH around the neutral range 6.18 showed the additive blended lubricant is not harmful for machinery devices.","PeriodicalId":21637,"journal":{"name":"Scientific World","volume":"37 1","pages":"33-36"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and Characterization of CuO-ZnO Nano Additive for Lubricant\",\"authors\":\"Buddha Shrestha, H. Trital, A. Rajbhandari\",\"doi\":\"10.3126/sw.v13i13.30504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mixed metal oxide (CuO-ZnO) additives has been successfully synthesized in laboratory by co-precipitation technique. The optimum ratio of CuO and ZnO in mixed metal oxide was found to be 1:1. The sodium lauryl sulfate (SLS) has been used as surfactant. The obtained material was found to be crystalline having crystalline size of 18 nm. The stretching band in FTIR spectra at around 1072 cm-1 to 750 cm-1 and around 600 cm-1 indicates the presence of Zn-O and Cu-O bonds. As prepared nano-particles have been used as nano additive in base oil to improve physio-chemical parameters of lubricants. The results revealed that the additive blended base oil (lubricant) has shown excellent lubrication properties. The higher kinematic viscosity of 33.0504 and 6.0158 at 40°C and 100°C respectively showed that as prepared additive blended lubricant is of ISO-32 category according to ISO grading system for lubricants. Similarly, viscosity index was found to be improved from 101 to 129. The pour point was found to be significantly decreased from -6°C to -24°C. So it can be used as good pour point depressant and could be used even in the extreme cold environment condition. The flash point was found to be increased from 215°C to 220°C indicating that the prepared mixed metal oxide (CuO-ZnO) acts as flash point enhancer. The copper strip corrosion rating was found to be 1b for additive indicating the non corrosive nature. The absence of moisture and pH around the neutral range 6.18 showed the additive blended lubricant is not harmful for machinery devices.\",\"PeriodicalId\":21637,\"journal\":{\"name\":\"Scientific World\",\"volume\":\"37 1\",\"pages\":\"33-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/sw.v13i13.30504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/sw.v13i13.30504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用共沉淀法在实验室成功合成了一种混合金属氧化物(CuO-ZnO)添加剂。在混合金属氧化物中,CuO与ZnO的最佳配比为1:1。采用十二烷基硫酸钠(SLS)作为表面活性剂。所得材料为晶体状,晶体尺寸为18纳米。在1072 cm-1 ~ 750 cm-1和600 cm-1附近的FTIR拉伸带表明存在Zn-O和Cu-O键。制备的纳米颗粒作为纳米添加剂应用于基础油中,改善了润滑油的理化参数。结果表明,该添加剂混合基础油(润滑油)具有优良的润滑性能。在40°C和100°C时的运动粘度分别为33.0504和6.0158,表明所制备的添加剂混合润滑油按照ISO润滑油分级体系属于ISO-32级。粘度指数也由101提高到129。从-6°C到-24°C,浇注点明显降低。因此,它可以作为良好的降凝剂,即使在极端寒冷的环境条件下也可以使用。闪点从215℃提高到220℃,表明所制备的混合金属氧化物(CuO-ZnO)起到了增强闪点的作用。发现添加剂的铜带腐蚀等级为1b,表明无腐蚀性。无水分,pH值在中性范围6.18左右,表明添加剂混合润滑油对机械设备无害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and Characterization of CuO-ZnO Nano Additive for Lubricant
A mixed metal oxide (CuO-ZnO) additives has been successfully synthesized in laboratory by co-precipitation technique. The optimum ratio of CuO and ZnO in mixed metal oxide was found to be 1:1. The sodium lauryl sulfate (SLS) has been used as surfactant. The obtained material was found to be crystalline having crystalline size of 18 nm. The stretching band in FTIR spectra at around 1072 cm-1 to 750 cm-1 and around 600 cm-1 indicates the presence of Zn-O and Cu-O bonds. As prepared nano-particles have been used as nano additive in base oil to improve physio-chemical parameters of lubricants. The results revealed that the additive blended base oil (lubricant) has shown excellent lubrication properties. The higher kinematic viscosity of 33.0504 and 6.0158 at 40°C and 100°C respectively showed that as prepared additive blended lubricant is of ISO-32 category according to ISO grading system for lubricants. Similarly, viscosity index was found to be improved from 101 to 129. The pour point was found to be significantly decreased from -6°C to -24°C. So it can be used as good pour point depressant and could be used even in the extreme cold environment condition. The flash point was found to be increased from 215°C to 220°C indicating that the prepared mixed metal oxide (CuO-ZnO) acts as flash point enhancer. The copper strip corrosion rating was found to be 1b for additive indicating the non corrosive nature. The absence of moisture and pH around the neutral range 6.18 showed the additive blended lubricant is not harmful for machinery devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信