{"title":"介子的手性超传播子","authors":"P. T. Davies","doi":"10.1088/0305-4470/5/12/009","DOIUrl":null,"url":null,"abstract":"The author considers the superpropagator constructed from a chiral SU(2)*SU(2) invariant Lagrangian. He shows in general how the complications arising from the derivative couplings can be separated from the nonpolynomial, nonderivative part; and explicitly calculate the pion superpropagator for the unique choice of pion field that strict localizability requires. In an Appendix he shows that an extension of the Efimov-Fradkin Green function representation will give us n multiplet to n multiplet second order functions from the superpropagator.","PeriodicalId":54612,"journal":{"name":"Physics-A Journal of General and Applied Physics","volume":"39 1","pages":"1698-1705"},"PeriodicalIF":0.0000,"publicationDate":"1972-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A chiral superpropagator for pions\",\"authors\":\"P. T. Davies\",\"doi\":\"10.1088/0305-4470/5/12/009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author considers the superpropagator constructed from a chiral SU(2)*SU(2) invariant Lagrangian. He shows in general how the complications arising from the derivative couplings can be separated from the nonpolynomial, nonderivative part; and explicitly calculate the pion superpropagator for the unique choice of pion field that strict localizability requires. In an Appendix he shows that an extension of the Efimov-Fradkin Green function representation will give us n multiplet to n multiplet second order functions from the superpropagator.\",\"PeriodicalId\":54612,\"journal\":{\"name\":\"Physics-A Journal of General and Applied Physics\",\"volume\":\"39 1\",\"pages\":\"1698-1705\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics-A Journal of General and Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0305-4470/5/12/009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics-A Journal of General and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/5/12/009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The author considers the superpropagator constructed from a chiral SU(2)*SU(2) invariant Lagrangian. He shows in general how the complications arising from the derivative couplings can be separated from the nonpolynomial, nonderivative part; and explicitly calculate the pion superpropagator for the unique choice of pion field that strict localizability requires. In an Appendix he shows that an extension of the Efimov-Fradkin Green function representation will give us n multiplet to n multiplet second order functions from the superpropagator.