{"title":"变周期谐振光栅的耦合模理论","authors":"D. Bykov, E. Bezus, L. Doskolovich","doi":"10.18287/2412-6179-co-1232","DOIUrl":null,"url":null,"abstract":"We propose a coupled-mode theory for resonant diffraction gratings with a varying period. We consider diffractive structures, in which the reciprocal lattice vector, a quantity inversely proportional to the period, varies linearly in the direction of periodicity. It is shown that optical properties of such a structure essentially depend on the period change rate. On the basis of a comparison with the results of rigorous numerical simulations using the rigorous coupled-wave analysis, high accuracy of the proposed theoretical model is demonstrated. In particular, the developed coupled-mode theory describes the broadening of the resonant peak and the appearance of secondary maxima caused by a non-zero period change rate. The obtained results can be used for the development of linear variable filters based on resonant diffraction gratings with varying parameters.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"68 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coupled-mode theory for resonant gratings with a varying period\",\"authors\":\"D. Bykov, E. Bezus, L. Doskolovich\",\"doi\":\"10.18287/2412-6179-co-1232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a coupled-mode theory for resonant diffraction gratings with a varying period. We consider diffractive structures, in which the reciprocal lattice vector, a quantity inversely proportional to the period, varies linearly in the direction of periodicity. It is shown that optical properties of such a structure essentially depend on the period change rate. On the basis of a comparison with the results of rigorous numerical simulations using the rigorous coupled-wave analysis, high accuracy of the proposed theoretical model is demonstrated. In particular, the developed coupled-mode theory describes the broadening of the resonant peak and the appearance of secondary maxima caused by a non-zero period change rate. The obtained results can be used for the development of linear variable filters based on resonant diffraction gratings with varying parameters.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Coupled-mode theory for resonant gratings with a varying period
We propose a coupled-mode theory for resonant diffraction gratings with a varying period. We consider diffractive structures, in which the reciprocal lattice vector, a quantity inversely proportional to the period, varies linearly in the direction of periodicity. It is shown that optical properties of such a structure essentially depend on the period change rate. On the basis of a comparison with the results of rigorous numerical simulations using the rigorous coupled-wave analysis, high accuracy of the proposed theoretical model is demonstrated. In particular, the developed coupled-mode theory describes the broadening of the resonant peak and the appearance of secondary maxima caused by a non-zero period change rate. The obtained results can be used for the development of linear variable filters based on resonant diffraction gratings with varying parameters.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.