{"title":"模型检查c++程序","authors":"Felipe R. Monteiro, M. R. Gadelha, L. Cordeiro","doi":"10.1002/stvr.1793","DOIUrl":null,"url":null,"abstract":"In the last three decades, memory safety issues in system programming languages such as C or C++ have been one of the most significant sources of security vulnerabilities. However, there exist only a few attempts with limited success to cope with the complexity of C++ program verification. We describe and evaluate a novel verification approach based on bounded model checking (BMC) and satisfiability modulo theories (SMT) to verify C++ programs. Our verification approach analyses bounded C++ programs by encoding into SMT various sophisticated features that the C++ programming language offers, such as templates, inheritance, polymorphism, exception handling, and the Standard Template Libraries. We formalize these features within our formal verification framework using a decidable fragment of first‐order logic and then show how state‐of‐the‐art SMT solvers can efficiently handle that. We implemented our verification approach on top of ESBMC. We compare ESBMC to LLBMC and DIVINE, which are state‐of‐the‐art verifiers to check C++ programs directly from the LLVM bitcode. Experimental results show that ESBMC can handle a wide range of C++ programs, presenting a higher number of correct verification results. Additionally, ESBMC has been applied to a commercial C++ application in the telecommunication domain and successfully detected arithmetic‐overflow errors, which could potentially lead to security vulnerabilities.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"77 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Model checking C++ programs\",\"authors\":\"Felipe R. Monteiro, M. R. Gadelha, L. Cordeiro\",\"doi\":\"10.1002/stvr.1793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last three decades, memory safety issues in system programming languages such as C or C++ have been one of the most significant sources of security vulnerabilities. However, there exist only a few attempts with limited success to cope with the complexity of C++ program verification. We describe and evaluate a novel verification approach based on bounded model checking (BMC) and satisfiability modulo theories (SMT) to verify C++ programs. Our verification approach analyses bounded C++ programs by encoding into SMT various sophisticated features that the C++ programming language offers, such as templates, inheritance, polymorphism, exception handling, and the Standard Template Libraries. We formalize these features within our formal verification framework using a decidable fragment of first‐order logic and then show how state‐of‐the‐art SMT solvers can efficiently handle that. We implemented our verification approach on top of ESBMC. We compare ESBMC to LLBMC and DIVINE, which are state‐of‐the‐art verifiers to check C++ programs directly from the LLVM bitcode. Experimental results show that ESBMC can handle a wide range of C++ programs, presenting a higher number of correct verification results. Additionally, ESBMC has been applied to a commercial C++ application in the telecommunication domain and successfully detected arithmetic‐overflow errors, which could potentially lead to security vulnerabilities.\",\"PeriodicalId\":49506,\"journal\":{\"name\":\"Software Testing Verification & Reliability\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Testing Verification & Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/stvr.1793\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1793","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
In the last three decades, memory safety issues in system programming languages such as C or C++ have been one of the most significant sources of security vulnerabilities. However, there exist only a few attempts with limited success to cope with the complexity of C++ program verification. We describe and evaluate a novel verification approach based on bounded model checking (BMC) and satisfiability modulo theories (SMT) to verify C++ programs. Our verification approach analyses bounded C++ programs by encoding into SMT various sophisticated features that the C++ programming language offers, such as templates, inheritance, polymorphism, exception handling, and the Standard Template Libraries. We formalize these features within our formal verification framework using a decidable fragment of first‐order logic and then show how state‐of‐the‐art SMT solvers can efficiently handle that. We implemented our verification approach on top of ESBMC. We compare ESBMC to LLBMC and DIVINE, which are state‐of‐the‐art verifiers to check C++ programs directly from the LLVM bitcode. Experimental results show that ESBMC can handle a wide range of C++ programs, presenting a higher number of correct verification results. Additionally, ESBMC has been applied to a commercial C++ application in the telecommunication domain and successfully detected arithmetic‐overflow errors, which could potentially lead to security vulnerabilities.
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing