基于语义视觉探索的灵活学习和基于序列的MOOC视频推荐

Jian Zhao, C. Bhatt, Matthew L. Cooper, David A. Shamma
{"title":"基于语义视觉探索的灵活学习和基于序列的MOOC视频推荐","authors":"Jian Zhao, C. Bhatt, Matthew L. Cooper, David A. Shamma","doi":"10.1145/3173574.3173903","DOIUrl":null,"url":null,"abstract":"Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. To overcome this limitation, this paper contributes a visual recommender system called MOOCex. The system recommends lecture videos across different courses by considering both video contents and sequential inter-topic relationships mined from course syllabi; and more importantly, it allows for interactive visual exploration of the semantic space of recommendations within a learner's current context. When compared to traditional methods (e.g., content-based recommendation and ranked list representations), MOOCex suggests videos from more diverse perspectives and helps learners make better video playback decisions. Further, feedback from MOOC learners and instructors indicates that the system enhances both learning and teaching effectiveness.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"8 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Flexible Learning with Semantic Visual Exploration and Sequence-Based Recommendation of MOOC Videos\",\"authors\":\"Jian Zhao, C. Bhatt, Matthew L. Cooper, David A. Shamma\",\"doi\":\"10.1145/3173574.3173903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. To overcome this limitation, this paper contributes a visual recommender system called MOOCex. The system recommends lecture videos across different courses by considering both video contents and sequential inter-topic relationships mined from course syllabi; and more importantly, it allows for interactive visual exploration of the semantic space of recommendations within a learner's current context. When compared to traditional methods (e.g., content-based recommendation and ranked list representations), MOOCex suggests videos from more diverse perspectives and helps learners make better video playback decisions. Further, feedback from MOOC learners and instructors indicates that the system enhances both learning and teaching effectiveness.\",\"PeriodicalId\":20512,\"journal\":{\"name\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"8 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173574.3173903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3173903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

大规模在线开放课程(MOOC)平台将在线教育规模扩大到前所未有的规模,但仍然受到其僵化的预定课程的限制。为了克服这一限制,本文提出了一个名为MOOCex的视觉推荐系统。系统通过考虑视频内容和从课程大纲中挖掘的顺序主题间关系,推荐不同课程的讲座视频;更重要的是,它允许在学习者当前上下文中对推荐的语义空间进行交互式视觉探索。与传统方法(如基于内容的推荐和排名表表示)相比,MOOCex从更多样化的角度推荐视频,帮助学习者更好地做出视频播放决策。此外,来自MOOC学习者和讲师的反馈表明,该系统提高了学习和教学效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible Learning with Semantic Visual Exploration and Sequence-Based Recommendation of MOOC Videos
Massive Open Online Course (MOOC) platforms have scaled online education to unprecedented enrollments, but remain limited by their rigid, predetermined curricula. To overcome this limitation, this paper contributes a visual recommender system called MOOCex. The system recommends lecture videos across different courses by considering both video contents and sequential inter-topic relationships mined from course syllabi; and more importantly, it allows for interactive visual exploration of the semantic space of recommendations within a learner's current context. When compared to traditional methods (e.g., content-based recommendation and ranked list representations), MOOCex suggests videos from more diverse perspectives and helps learners make better video playback decisions. Further, feedback from MOOC learners and instructors indicates that the system enhances both learning and teaching effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信