{"title":"向量格中阶收敛的一种推广","authors":"Kazem Haghnejad Azar","doi":"10.22190/fumi210417036h","DOIUrl":null,"url":null,"abstract":"Let $E$ be a sublattice of a vector lattice $F$.$\\left( x_\\alpha \\right)\\subseteq E$ is said to be $ F $-order convergent to a vector $ x $ (in symbols $ x_\\alpha \\xrightarrow{Fo} x $), whenever there exists another net $ \\left(y_\\alpha\\right) $ in $F $ with the some index set satisfying $ y_\\alpha\\downarrow 0 $ in $F$ and $ \\vert x_\\alpha - x \\vert \\leq y_\\alpha $ for all indexes $ \\alpha $.If $F=E^{\\sim\\sim}$, this convergence is called $b$-order convergence and we write $ x_\\alpha \\xrightarrow{bo} x$. In this manuscript, first we study some properties of $Fo$-convergence nets and we extend same results to the general case. In the second part, we introduce $b$-order continuous operators and we invistegate some properties of this new concept. An operator $T$ between two vector lattices $E$ and $F$ is said to be $b$-order continuous, if $ x_\\alpha \\xrightarrow{bo} 0 $ in $E$ implies $ Tx_\\alpha \\xrightarrow{bo} 0$ in $F$.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"68 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A GENERALIZATION OF ORDER CONVERGENCE IN THE VECTOR LATTICES\",\"authors\":\"Kazem Haghnejad Azar\",\"doi\":\"10.22190/fumi210417036h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E$ be a sublattice of a vector lattice $F$.$\\\\left( x_\\\\alpha \\\\right)\\\\subseteq E$ is said to be $ F $-order convergent to a vector $ x $ (in symbols $ x_\\\\alpha \\\\xrightarrow{Fo} x $), whenever there exists another net $ \\\\left(y_\\\\alpha\\\\right) $ in $F $ with the some index set satisfying $ y_\\\\alpha\\\\downarrow 0 $ in $F$ and $ \\\\vert x_\\\\alpha - x \\\\vert \\\\leq y_\\\\alpha $ for all indexes $ \\\\alpha $.If $F=E^{\\\\sim\\\\sim}$, this convergence is called $b$-order convergence and we write $ x_\\\\alpha \\\\xrightarrow{bo} x$. In this manuscript, first we study some properties of $Fo$-convergence nets and we extend same results to the general case. In the second part, we introduce $b$-order continuous operators and we invistegate some properties of this new concept. An operator $T$ between two vector lattices $E$ and $F$ is said to be $b$-order continuous, if $ x_\\\\alpha \\\\xrightarrow{bo} 0 $ in $E$ implies $ Tx_\\\\alpha \\\\xrightarrow{bo} 0$ in $F$.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi210417036h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi210417036h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A GENERALIZATION OF ORDER CONVERGENCE IN THE VECTOR LATTICES
Let $E$ be a sublattice of a vector lattice $F$.$\left( x_\alpha \right)\subseteq E$ is said to be $ F $-order convergent to a vector $ x $ (in symbols $ x_\alpha \xrightarrow{Fo} x $), whenever there exists another net $ \left(y_\alpha\right) $ in $F $ with the some index set satisfying $ y_\alpha\downarrow 0 $ in $F$ and $ \vert x_\alpha - x \vert \leq y_\alpha $ for all indexes $ \alpha $.If $F=E^{\sim\sim}$, this convergence is called $b$-order convergence and we write $ x_\alpha \xrightarrow{bo} x$. In this manuscript, first we study some properties of $Fo$-convergence nets and we extend same results to the general case. In the second part, we introduce $b$-order continuous operators and we invistegate some properties of this new concept. An operator $T$ between two vector lattices $E$ and $F$ is said to be $b$-order continuous, if $ x_\alpha \xrightarrow{bo} 0 $ in $E$ implies $ Tx_\alpha \xrightarrow{bo} 0$ in $F$.