锌基掺杂生物相容性材料的热变形和疲劳行为:表面等离子喷涂涂层的表征

IF 2 3区 材料科学 Q2 ENGINEERING, MECHANICAL
V. B, Suresh Sonagiri, S. S
{"title":"锌基掺杂生物相容性材料的热变形和疲劳行为:表面等离子喷涂涂层的表征","authors":"V. B, Suresh Sonagiri, S. S","doi":"10.1088/2051-672X/acf234","DOIUrl":null,"url":null,"abstract":"Composite materials are natural or man-made substances put into the body to turn a living cell into a working organ. Bone tissue and biocompatibility are emerging as an alternative approach to regenerating bone due to some distinct advantages over autografting. This research aimed to fabricate a novel porous scaffold that can be utilized as a bone substitute. Zn-nHApx-Srx (x = 0, 3, 6, 9) was selected by different weight ratios and synthesized using the powder metallurgy method. The utilization of nanohydroxyapatite (Ca10(PO4)6(OH)2) is due to its excellent biocompatibility with the human body. Polylactic-co-glycolic acid (PLGA) is incorporated to get enhanced biological performance. Plasma spray coating was performed on a zinc substrate using pure and doped biocomposites calcined at 800 °C. The biocomposites tensile strength increased between 0.4 and 19.8 MPa by increasing Zn and Sr weight ratios. In addition, 3% Sr/2.5% Zn with 2% of nHAp-PLGA composite showed improved hardness, which is beneficial for resembling bone tissue and die-casting fittings in automobile manufacturing applications. Mechanical properties, FT-IR, hot deformation behaviour, and SEM techniques help us understand the behaviour of Zn-Sr-nHAp in a vial containing PLGA. The highest ultimate tensile strength of 182 MPa and improved flow softening behaviour are achieved in a coated Zn/6% (nHAp-Sr) mixture suitable for biodegradable implant applications.","PeriodicalId":22028,"journal":{"name":"Surface Topography: Metrology and Properties","volume":"565 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot deformation and fatigue behaviour of a zinc base doped biocompatible material: characterization of plasma spray coating on surface\",\"authors\":\"V. B, Suresh Sonagiri, S. S\",\"doi\":\"10.1088/2051-672X/acf234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite materials are natural or man-made substances put into the body to turn a living cell into a working organ. Bone tissue and biocompatibility are emerging as an alternative approach to regenerating bone due to some distinct advantages over autografting. This research aimed to fabricate a novel porous scaffold that can be utilized as a bone substitute. Zn-nHApx-Srx (x = 0, 3, 6, 9) was selected by different weight ratios and synthesized using the powder metallurgy method. The utilization of nanohydroxyapatite (Ca10(PO4)6(OH)2) is due to its excellent biocompatibility with the human body. Polylactic-co-glycolic acid (PLGA) is incorporated to get enhanced biological performance. Plasma spray coating was performed on a zinc substrate using pure and doped biocomposites calcined at 800 °C. The biocomposites tensile strength increased between 0.4 and 19.8 MPa by increasing Zn and Sr weight ratios. In addition, 3% Sr/2.5% Zn with 2% of nHAp-PLGA composite showed improved hardness, which is beneficial for resembling bone tissue and die-casting fittings in automobile manufacturing applications. Mechanical properties, FT-IR, hot deformation behaviour, and SEM techniques help us understand the behaviour of Zn-Sr-nHAp in a vial containing PLGA. The highest ultimate tensile strength of 182 MPa and improved flow softening behaviour are achieved in a coated Zn/6% (nHAp-Sr) mixture suitable for biodegradable implant applications.\",\"PeriodicalId\":22028,\"journal\":{\"name\":\"Surface Topography: Metrology and Properties\",\"volume\":\"565 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Topography: Metrology and Properties\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2051-672X/acf234\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Topography: Metrology and Properties","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2051-672X/acf234","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

复合材料是一种天然的或人造的物质,用于将活细胞转化为工作器官。由于骨组织和生物相容性比自体移植有一些明显的优势,因此正在成为再生骨的替代方法。本研究旨在制造一种新型多孔支架,可作为骨替代物。选择不同重量比的zn - nhax - srx (x = 0,3,6,9),采用粉末冶金法合成。纳米羟基磷灰石(Ca10(PO4)6(OH)2)的利用是由于其与人体良好的生物相容性。加入聚乳酸-羟基乙酸(PLGA)以提高生物性能。在800°C下煅烧的纯和掺杂生物复合材料在锌基体上进行等离子喷涂。随着Zn和Sr质量比的增加,生物复合材料的抗拉强度提高了0.4 ~ 19.8 MPa。此外,3% Sr/2.5% Zn和2% nHAp-PLGA复合材料的硬度有所提高,有利于类似骨组织和压铸件在汽车制造中的应用。机械性能,FT-IR,热变形行为和SEM技术帮助我们了解Zn-Sr-nHAp在含有PLGA的小瓶中的行为。在适用于生物可降解植入物的涂覆Zn/6% (nHAp-Sr)混合物中,达到了182 MPa的最高极限拉伸强度和改善的流动软化行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hot deformation and fatigue behaviour of a zinc base doped biocompatible material: characterization of plasma spray coating on surface
Composite materials are natural or man-made substances put into the body to turn a living cell into a working organ. Bone tissue and biocompatibility are emerging as an alternative approach to regenerating bone due to some distinct advantages over autografting. This research aimed to fabricate a novel porous scaffold that can be utilized as a bone substitute. Zn-nHApx-Srx (x = 0, 3, 6, 9) was selected by different weight ratios and synthesized using the powder metallurgy method. The utilization of nanohydroxyapatite (Ca10(PO4)6(OH)2) is due to its excellent biocompatibility with the human body. Polylactic-co-glycolic acid (PLGA) is incorporated to get enhanced biological performance. Plasma spray coating was performed on a zinc substrate using pure and doped biocomposites calcined at 800 °C. The biocomposites tensile strength increased between 0.4 and 19.8 MPa by increasing Zn and Sr weight ratios. In addition, 3% Sr/2.5% Zn with 2% of nHAp-PLGA composite showed improved hardness, which is beneficial for resembling bone tissue and die-casting fittings in automobile manufacturing applications. Mechanical properties, FT-IR, hot deformation behaviour, and SEM techniques help us understand the behaviour of Zn-Sr-nHAp in a vial containing PLGA. The highest ultimate tensile strength of 182 MPa and improved flow softening behaviour are achieved in a coated Zn/6% (nHAp-Sr) mixture suitable for biodegradable implant applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Topography: Metrology and Properties
Surface Topography: Metrology and Properties Materials Science-Materials Chemistry
CiteScore
4.10
自引率
22.20%
发文量
183
期刊介绍: An international forum for academics, industrialists and engineers to publish the latest research in surface topography measurement and characterisation, instrumentation development and the properties of surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信