{"title":"点阵QCD+QED中的轻子反常磁矩","authors":"Davide Giusti, S. Simula","doi":"10.22323/1.363.0104","DOIUrl":null,"url":null,"abstract":"We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution to the anomalous magnetic moments of the electron, $a_e^{\\rm HVP}$, the muon, $a_\\mu^{\\rm HVP}$, and the tau, $a_\\tau^{\\rm HVP}$, including both the isospin-symmetric QCD term and the leading-order strong and electromagnetic isospin-breaking corrections. Moreover, the contribution to $a_\\mu^{\\rm HVP}$ not covered by the MUonE experimen, $a_{MUonE}^{\\rm HVP}$, is provided. We get $a_e^{\\rm HVP} = 185.8~(4.2) \\cdot 10^{-14}$, $a_\\mu^{\\rm HVP} = 692.1~(16.3) \\cdot 10^{-10}$, $a_\\tau^{\\rm HVP} = 335.9~(6.9) \\cdot 10^{-8}$ and $a_{MUonE}^{\\rm HVP} = 91.6~(2.0) \\cdot 10^{-10}$. Our results are obtained in the quenched-QED approximation using the QCD gauge configurations generated by the European (now Extended) Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ dynamical quarks, at three values of the lattice spacing varying from $0.089$ to $0.062$ fm, at several values of the lattice spatial size ($L \\simeq 1.8 ÷3.5$ fm) and with pion masses in the range between $\\simeq 220$ and $\\simeq 490$ MeV.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Lepton anomalous magnetic moments in Lattice QCD+QED\",\"authors\":\"Davide Giusti, S. Simula\",\"doi\":\"10.22323/1.363.0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution to the anomalous magnetic moments of the electron, $a_e^{\\\\rm HVP}$, the muon, $a_\\\\mu^{\\\\rm HVP}$, and the tau, $a_\\\\tau^{\\\\rm HVP}$, including both the isospin-symmetric QCD term and the leading-order strong and electromagnetic isospin-breaking corrections. Moreover, the contribution to $a_\\\\mu^{\\\\rm HVP}$ not covered by the MUonE experimen, $a_{MUonE}^{\\\\rm HVP}$, is provided. We get $a_e^{\\\\rm HVP} = 185.8~(4.2) \\\\cdot 10^{-14}$, $a_\\\\mu^{\\\\rm HVP} = 692.1~(16.3) \\\\cdot 10^{-10}$, $a_\\\\tau^{\\\\rm HVP} = 335.9~(6.9) \\\\cdot 10^{-8}$ and $a_{MUonE}^{\\\\rm HVP} = 91.6~(2.0) \\\\cdot 10^{-10}$. Our results are obtained in the quenched-QED approximation using the QCD gauge configurations generated by the European (now Extended) Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ dynamical quarks, at three values of the lattice spacing varying from $0.089$ to $0.062$ fm, at several values of the lattice spatial size ($L \\\\simeq 1.8 ÷3.5$ fm) and with pion masses in the range between $\\\\simeq 220$ and $\\\\simeq 490$ MeV.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lepton anomalous magnetic moments in Lattice QCD+QED
We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution to the anomalous magnetic moments of the electron, $a_e^{\rm HVP}$, the muon, $a_\mu^{\rm HVP}$, and the tau, $a_\tau^{\rm HVP}$, including both the isospin-symmetric QCD term and the leading-order strong and electromagnetic isospin-breaking corrections. Moreover, the contribution to $a_\mu^{\rm HVP}$ not covered by the MUonE experimen, $a_{MUonE}^{\rm HVP}$, is provided. We get $a_e^{\rm HVP} = 185.8~(4.2) \cdot 10^{-14}$, $a_\mu^{\rm HVP} = 692.1~(16.3) \cdot 10^{-10}$, $a_\tau^{\rm HVP} = 335.9~(6.9) \cdot 10^{-8}$ and $a_{MUonE}^{\rm HVP} = 91.6~(2.0) \cdot 10^{-10}$. Our results are obtained in the quenched-QED approximation using the QCD gauge configurations generated by the European (now Extended) Twisted Mass Collaboration (ETMC) with $N_f=2+1+1$ dynamical quarks, at three values of the lattice spacing varying from $0.089$ to $0.062$ fm, at several values of the lattice spatial size ($L \simeq 1.8 ÷3.5$ fm) and with pion masses in the range between $\simeq 220$ and $\simeq 490$ MeV.