甘油选择性氢解制1,3-丙二醇固体催化剂的研究进展

Susmita Bhowmik, Srinivas Darbha
{"title":"甘油选择性氢解制1,3-丙二醇固体催化剂的研究进展","authors":"Susmita Bhowmik, Srinivas Darbha","doi":"10.1080/01614940.2020.1794737","DOIUrl":null,"url":null,"abstract":"ABSTRACT Glycerol is one of the top 12 platform chemicals obtained from biomass. Its surplus availability as a by-product of biodiesel, fat-splitting and soap manufacturing industries and affordable price lends significant opportunity for its valorization, using solid catalysts, into propanediols (PDOs), particularly to 1,3-propanediol (1,3-PDO), by selective hydrogenolysis. 1,3-PDO is an important chemical with wide applications including that as a precursor in polymers manufacturing. However, the synthesis of 1,3-PDO by selective cleavage of the secondary C-O bond of glycerol in the presence of hydrogen (instead of the primary C-O bond yielding 1,2-PDO) is highly challenging. Of late, supported Pt and Ir catalysts in combination with a reducible oxide (WOx or ReOx) were found selective for 1,3-PDO formation. Support, metals composition and additives (co-added metals) affect the performance of these catalysts. Detailed investigations revealed that metal dispersion, electronic connectivity between metal and metal oxide/support, hydrogen activation/spillover and Brönsted acidity are some parameters that influence the activity and selectivity of these bi-functional, metal-metal oxide catalysts. This review summarizes the latest advances in these solid catalysts for selective hydrogenolysis of glycerol to 1,3-PDO, a monomer for advanced polymers.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol\",\"authors\":\"Susmita Bhowmik, Srinivas Darbha\",\"doi\":\"10.1080/01614940.2020.1794737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Glycerol is one of the top 12 platform chemicals obtained from biomass. Its surplus availability as a by-product of biodiesel, fat-splitting and soap manufacturing industries and affordable price lends significant opportunity for its valorization, using solid catalysts, into propanediols (PDOs), particularly to 1,3-propanediol (1,3-PDO), by selective hydrogenolysis. 1,3-PDO is an important chemical with wide applications including that as a precursor in polymers manufacturing. However, the synthesis of 1,3-PDO by selective cleavage of the secondary C-O bond of glycerol in the presence of hydrogen (instead of the primary C-O bond yielding 1,2-PDO) is highly challenging. Of late, supported Pt and Ir catalysts in combination with a reducible oxide (WOx or ReOx) were found selective for 1,3-PDO formation. Support, metals composition and additives (co-added metals) affect the performance of these catalysts. Detailed investigations revealed that metal dispersion, electronic connectivity between metal and metal oxide/support, hydrogen activation/spillover and Brönsted acidity are some parameters that influence the activity and selectivity of these bi-functional, metal-metal oxide catalysts. This review summarizes the latest advances in these solid catalysts for selective hydrogenolysis of glycerol to 1,3-PDO, a monomer for advanced polymers.\",\"PeriodicalId\":9647,\"journal\":{\"name\":\"Catalysis Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01614940.2020.1794737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01614940.2020.1794737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

甘油是从生物质中获得的12种顶级平台化学品之一。作为生物柴油、油脂分解和肥皂制造行业的副产品,它的剩余可用性和可承受的价格为其增值提供了巨大的机会,使用固体催化剂,通过选择性氢解转化为丙二醇(pdo),特别是1,3-丙二醇(1,3- pdo)。1,3- pdo是一种重要的化学物质,具有广泛的应用,包括作为聚合物制造的前体。然而,通过在氢存在下选择性切割甘油的次级C-O键(而不是产生1,2- pdo的初级C-O键)来合成1,3- pdo是非常具有挑战性的。最近,负载Pt和Ir催化剂与可还原性氧化物(WOx或ReOx)结合被发现对1,3- pdo形成有选择性。载体、金属成分和添加剂(共添加金属)影响这些催化剂的性能。详细的研究表明,金属分散、金属与金属氧化物/载体之间的电子连通性、氢活化/溢出和Brönsted酸度是影响这些双功能金属-金属氧化物催化剂活性和选择性的一些参数。本文综述了固体催化剂在甘油选择性氢解制1,3- pdo的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol
ABSTRACT Glycerol is one of the top 12 platform chemicals obtained from biomass. Its surplus availability as a by-product of biodiesel, fat-splitting and soap manufacturing industries and affordable price lends significant opportunity for its valorization, using solid catalysts, into propanediols (PDOs), particularly to 1,3-propanediol (1,3-PDO), by selective hydrogenolysis. 1,3-PDO is an important chemical with wide applications including that as a precursor in polymers manufacturing. However, the synthesis of 1,3-PDO by selective cleavage of the secondary C-O bond of glycerol in the presence of hydrogen (instead of the primary C-O bond yielding 1,2-PDO) is highly challenging. Of late, supported Pt and Ir catalysts in combination with a reducible oxide (WOx or ReOx) were found selective for 1,3-PDO formation. Support, metals composition and additives (co-added metals) affect the performance of these catalysts. Detailed investigations revealed that metal dispersion, electronic connectivity between metal and metal oxide/support, hydrogen activation/spillover and Brönsted acidity are some parameters that influence the activity and selectivity of these bi-functional, metal-metal oxide catalysts. This review summarizes the latest advances in these solid catalysts for selective hydrogenolysis of glycerol to 1,3-PDO, a monomer for advanced polymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信