基于机器学习算法的自学习智能家居系统的设计与实现

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
C. Güven, M. Aci
{"title":"基于机器学习算法的自学习智能家居系统的设计与实现","authors":"C. Güven, M. Aci","doi":"10.5755/j01.itc.51.3.31273","DOIUrl":null,"url":null,"abstract":"Smart home systems are the integration of technology and services through the network for a better quality of life. Smart homes perform daily housework and activities more easily without user intervention or with remote control of the user. In this study, a machine learning-based smart home system has been developed. The aim of the study is to design a system that can continuously improve itself and learn instead of an ordinary smart home system that can be remotely controlled. The developed machine learning model predicts the routine activities of the users in the home and performs some operations for the user autonomously. The dataset used in the study consists of real data received from the sensors as a result of the daily use. Naive Bayes (NB) (i.e. Gaussian NB, Bernoulli NB, Multinomial NB, and Complement NB), ensemble (i.e. Random Forest, Gradient Tree Boosting and eXtreme Gradient Boosting), linear (i.e. Logistic Regression, Stochastic Gradient Descent, and Passive-Aggressive Classification), and other (i.e. Decision Tree, Support Vector Machine, K Nearest Neighbor, Gaussian Process Classifier (GPC), Multilayer Perceptron) machine learning-based algorithms were utilized. The performance of the proposed smart home system was evaluated using several performance metrics: The best results were obtained from the GPC algorithm (i.e. Precision: 0.97, Recall: 0.98, F1-score: 0.97, Accuracy: 0.97).","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"24 1","pages":"545-562"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of a Self-Learner Smart Home System Using Machine Learning Algorithms\",\"authors\":\"C. Güven, M. Aci\",\"doi\":\"10.5755/j01.itc.51.3.31273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart home systems are the integration of technology and services through the network for a better quality of life. Smart homes perform daily housework and activities more easily without user intervention or with remote control of the user. In this study, a machine learning-based smart home system has been developed. The aim of the study is to design a system that can continuously improve itself and learn instead of an ordinary smart home system that can be remotely controlled. The developed machine learning model predicts the routine activities of the users in the home and performs some operations for the user autonomously. The dataset used in the study consists of real data received from the sensors as a result of the daily use. Naive Bayes (NB) (i.e. Gaussian NB, Bernoulli NB, Multinomial NB, and Complement NB), ensemble (i.e. Random Forest, Gradient Tree Boosting and eXtreme Gradient Boosting), linear (i.e. Logistic Regression, Stochastic Gradient Descent, and Passive-Aggressive Classification), and other (i.e. Decision Tree, Support Vector Machine, K Nearest Neighbor, Gaussian Process Classifier (GPC), Multilayer Perceptron) machine learning-based algorithms were utilized. The performance of the proposed smart home system was evaluated using several performance metrics: The best results were obtained from the GPC algorithm (i.e. Precision: 0.97, Recall: 0.98, F1-score: 0.97, Accuracy: 0.97).\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"24 1\",\"pages\":\"545-562\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.51.3.31273\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.51.3.31273","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能家居系统是通过网络整合技术和服务,以实现更好的生活质量。智能家居无需用户干预或远程控制,可以更轻松地完成日常家务和活动。本研究开发了一种基于机器学习的智能家居系统。研究的目的是设计一个可以不断自我改进和学习的系统,而不是普通的可以远程控制的智能家居系统。开发的机器学习模型可以预测用户在家中的日常活动,并自主地为用户执行一些操作。研究中使用的数据集由日常使用中从传感器接收到的真实数据组成。利用朴素贝叶斯(NB)(即高斯NB、伯努利NB、多项式NB和补元NB)、集成(即随机森林、梯度树增强和极端梯度增强)、线性(即逻辑回归、随机梯度下降和被动攻击分类)和其他(即决策树、支持向量机、K近邻、高斯过程分类器(GPC)、多层感知器)机器学习的算法。使用几个性能指标对所提出的智能家居系统的性能进行了评估:GPC算法获得了最好的结果(即Precision: 0.97, Recall: 0.98, F1-score: 0.97, Accuracy: 0.97)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Implementation of a Self-Learner Smart Home System Using Machine Learning Algorithms
Smart home systems are the integration of technology and services through the network for a better quality of life. Smart homes perform daily housework and activities more easily without user intervention or with remote control of the user. In this study, a machine learning-based smart home system has been developed. The aim of the study is to design a system that can continuously improve itself and learn instead of an ordinary smart home system that can be remotely controlled. The developed machine learning model predicts the routine activities of the users in the home and performs some operations for the user autonomously. The dataset used in the study consists of real data received from the sensors as a result of the daily use. Naive Bayes (NB) (i.e. Gaussian NB, Bernoulli NB, Multinomial NB, and Complement NB), ensemble (i.e. Random Forest, Gradient Tree Boosting and eXtreme Gradient Boosting), linear (i.e. Logistic Regression, Stochastic Gradient Descent, and Passive-Aggressive Classification), and other (i.e. Decision Tree, Support Vector Machine, K Nearest Neighbor, Gaussian Process Classifier (GPC), Multilayer Perceptron) machine learning-based algorithms were utilized. The performance of the proposed smart home system was evaluated using several performance metrics: The best results were obtained from the GPC algorithm (i.e. Precision: 0.97, Recall: 0.98, F1-score: 0.97, Accuracy: 0.97).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信