具有给定连续混合模主量的多变量周期函数类的逼近

IF 1 Q1 MATHEMATICS
O. Fedunyk-Yaremchuk, S. Hembars’ka
{"title":"具有给定连续混合模主量的多变量周期函数类的逼近","authors":"O. Fedunyk-Yaremchuk, S. Hembars’ka","doi":"10.15330/cmp.13.3.838-850","DOIUrl":null,"url":null,"abstract":"In this paper, we continue the study of approximation characteristics of the classes $B^{\\Omega}_{p,\\theta}$ of periodic functions of several variables whose majorant of the mixed moduli of continuity contains both exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojective widths of the classes $B^{\\Omega}_{p,\\theta}$ in the space $L_{q},$ $1\\leq p<q<\\infty,$ and also establish the exact-order estimates of approximation for these classes of functions in the space $L_{q}$ by using linear operators satisfying certain conditions.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of classes of periodic functions of several variables with given majorant of mixed moduli of continuity\",\"authors\":\"O. Fedunyk-Yaremchuk, S. Hembars’ka\",\"doi\":\"10.15330/cmp.13.3.838-850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we continue the study of approximation characteristics of the classes $B^{\\\\Omega}_{p,\\\\theta}$ of periodic functions of several variables whose majorant of the mixed moduli of continuity contains both exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojective widths of the classes $B^{\\\\Omega}_{p,\\\\theta}$ in the space $L_{q},$ $1\\\\leq p<q<\\\\infty,$ and also establish the exact-order estimates of approximation for these classes of functions in the space $L_{q}$ by using linear operators satisfying certain conditions.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.13.3.838-850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.13.3.838-850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们继续研究了若干变量周期函数$B^{\Omega}_{p,\theta}$类的逼近特性,这些函数的连续性混合模的主模同时包含指数乘子和对数乘子。利用满足一定条件的线性算子,我们得到了在$L_{q},$$1\leq p本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Approximation of classes of periodic functions of several variables with given majorant of mixed moduli of continuity
In this paper, we continue the study of approximation characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables whose majorant of the mixed moduli of continuity contains both exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojective widths of the classes $B^{\Omega}_{p,\theta}$ in the space $L_{q},$ $1\leq p
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信