{"title":"非一般闭合自收缩子微扰的分岔","authors":"Zhengjiang Lin, Ao Sun","doi":"10.1142/s1793525321500199","DOIUrl":null,"url":null,"abstract":"We discover a bifurcation of the perturbations of non-generic closed self-shrinkers. If the generic perturbation is outward, then the next mean curvature flow singularity is cylindrical and collapsing from outside; if the generic perturbation is inward, then the next mean curvature flow singularity is cylindrical and collapsing from inside.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bifurcation of perturbations of non-generic closed self-shrinkers\",\"authors\":\"Zhengjiang Lin, Ao Sun\",\"doi\":\"10.1142/s1793525321500199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discover a bifurcation of the perturbations of non-generic closed self-shrinkers. If the generic perturbation is outward, then the next mean curvature flow singularity is cylindrical and collapsing from outside; if the generic perturbation is inward, then the next mean curvature flow singularity is cylindrical and collapsing from inside.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525321500199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793525321500199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bifurcation of perturbations of non-generic closed self-shrinkers
We discover a bifurcation of the perturbations of non-generic closed self-shrinkers. If the generic perturbation is outward, then the next mean curvature flow singularity is cylindrical and collapsing from outside; if the generic perturbation is inward, then the next mean curvature flow singularity is cylindrical and collapsing from inside.