关于外行排列的简短说明

Pub Date : 2022-12-01 DOI:10.2478/ausm-2022-0015
P. Hajnal
{"title":"关于外行排列的简短说明","authors":"P. Hajnal","doi":"10.2478/ausm-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract A permutation p of [k] = {1, 2, 3, …, k} is called Layman permutation iff i + p(i) is a Fibonacci number for 1 ≤ i ≤ k. This concept is introduced by Layman in the A097082 entry of the Encyclopedia of Integers Sequences, that is the number of Layman permutations of [n]. In this paper, we will study Layman permutations. We introduce the notion of the Fibonacci complement of a natural number, that plays a crucial role in our investigation. Using this notion we prove some results on the number of Layman permutations, related to a conjecture of Layman that is implicit in the A097083 entry of OEIS.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short note on Layman permutations\",\"authors\":\"P. Hajnal\",\"doi\":\"10.2478/ausm-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A permutation p of [k] = {1, 2, 3, …, k} is called Layman permutation iff i + p(i) is a Fibonacci number for 1 ≤ i ≤ k. This concept is introduced by Layman in the A097082 entry of the Encyclopedia of Integers Sequences, that is the number of Layman permutations of [n]. In this paper, we will study Layman permutations. We introduce the notion of the Fibonacci complement of a natural number, that plays a crucial role in our investigation. Using this notion we prove some results on the number of Layman permutations, related to a conjecture of Layman that is implicit in the A097083 entry of OEIS.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2022-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

[k] ={1,2,3,…,k}的排列p称为Layman置换,如果i + p(i)是1≤i≤k的斐波那契数,这个概念是由Layman在《整数序列百科全书》的A097082条目中引入的,即[n]的Layman置换个数。在本文中,我们将研究外行人排列。我们引入了自然数的斐波那契补的概念,它在我们的研究中起着至关重要的作用。利用这一概念,我们证明了关于Layman排列数目的一些结果,这些结果与隐含在OEIS的A097083条目中的Layman猜想有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A short note on Layman permutations
Abstract A permutation p of [k] = {1, 2, 3, …, k} is called Layman permutation iff i + p(i) is a Fibonacci number for 1 ≤ i ≤ k. This concept is introduced by Layman in the A097082 entry of the Encyclopedia of Integers Sequences, that is the number of Layman permutations of [n]. In this paper, we will study Layman permutations. We introduce the notion of the Fibonacci complement of a natural number, that plays a crucial role in our investigation. Using this notion we prove some results on the number of Layman permutations, related to a conjecture of Layman that is implicit in the A097083 entry of OEIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信