Aasrith Ganti, Timothy Ortiz, Tracy Wynn, Jenshan Lin, R. Duensing
{"title":"PIN二极管非线性对磁共振成像表面线圈解耦电路的影响","authors":"Aasrith Ganti, Timothy Ortiz, Tracy Wynn, Jenshan Lin, R. Duensing","doi":"10.1002/cmr.b.21398","DOIUrl":null,"url":null,"abstract":"Correspondence Aasrith Ganti, Philips Healthcare, Gainesville, FL and University of Florida, Gainesville, FL. Email: aasrith.ganti@philips.com Abstract Decoupler circuits are the primary circuits used to maintain safety and image quality in switching magnetic resonance imaging (MRI) surface coils. Decoupler circuits predominantly employ PIN diodes as a switch and their performance is most commonly calculated on the bench at DC and low power RF conditions. The effects of high‐power RF on PIN diode decoupler circuits are not usually measured. Experiments at high RF power levels reveal a decrease in the impedance of a typical decoupler as the PIN diode operates in the nonlinear region, effectively increasing the ON‐resistance of the PIN diode. The constraints that dictate the start of nonlinearities are studied, and ways to control these nonlinearities are presented. Furthermore, this work is used as a basis to extend and improve upon previous work that established figure of merit (FOM) for PIN diode decouplers. This study is a comprehensive guide for MRI coil designers who face the task of designing decoupler circuits for surface coils and are looking for tools to accurately estimate the dynamic impedance of the circuit over the course of an MRI sequence.","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"70 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of PIN diode nonlinearity on decoupler circuits in magnetic resonance imaging surface coils\",\"authors\":\"Aasrith Ganti, Timothy Ortiz, Tracy Wynn, Jenshan Lin, R. Duensing\",\"doi\":\"10.1002/cmr.b.21398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correspondence Aasrith Ganti, Philips Healthcare, Gainesville, FL and University of Florida, Gainesville, FL. Email: aasrith.ganti@philips.com Abstract Decoupler circuits are the primary circuits used to maintain safety and image quality in switching magnetic resonance imaging (MRI) surface coils. Decoupler circuits predominantly employ PIN diodes as a switch and their performance is most commonly calculated on the bench at DC and low power RF conditions. The effects of high‐power RF on PIN diode decoupler circuits are not usually measured. Experiments at high RF power levels reveal a decrease in the impedance of a typical decoupler as the PIN diode operates in the nonlinear region, effectively increasing the ON‐resistance of the PIN diode. The constraints that dictate the start of nonlinearities are studied, and ways to control these nonlinearities are presented. Furthermore, this work is used as a basis to extend and improve upon previous work that established figure of merit (FOM) for PIN diode decouplers. This study is a comprehensive guide for MRI coil designers who face the task of designing decoupler circuits for surface coils and are looking for tools to accurately estimate the dynamic impedance of the circuit over the course of an MRI sequence.\",\"PeriodicalId\":50623,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmr.b.21398\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmr.b.21398","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of PIN diode nonlinearity on decoupler circuits in magnetic resonance imaging surface coils
Correspondence Aasrith Ganti, Philips Healthcare, Gainesville, FL and University of Florida, Gainesville, FL. Email: aasrith.ganti@philips.com Abstract Decoupler circuits are the primary circuits used to maintain safety and image quality in switching magnetic resonance imaging (MRI) surface coils. Decoupler circuits predominantly employ PIN diodes as a switch and their performance is most commonly calculated on the bench at DC and low power RF conditions. The effects of high‐power RF on PIN diode decoupler circuits are not usually measured. Experiments at high RF power levels reveal a decrease in the impedance of a typical decoupler as the PIN diode operates in the nonlinear region, effectively increasing the ON‐resistance of the PIN diode. The constraints that dictate the start of nonlinearities are studied, and ways to control these nonlinearities are presented. Furthermore, this work is used as a basis to extend and improve upon previous work that established figure of merit (FOM) for PIN diode decouplers. This study is a comprehensive guide for MRI coil designers who face the task of designing decoupler circuits for surface coils and are looking for tools to accurately estimate the dynamic impedance of the circuit over the course of an MRI sequence.
期刊介绍:
Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.