{"title":"拓扑音乐分析(TMA)框架","authors":"Alberto Alcal'a-Alvarez, P. Padilla-Longoria","doi":"10.1080/17459737.2023.2219994","DOIUrl":null,"url":null,"abstract":"In the present article we describe and discuss a framework for applying different topological data analysis (TDA) techniques to a music fragment given as a score in traditional Western notation. We first consider different sets of points in Euclidean spaces of different dimensions that correspond to musical events in the score, and obtain their persistent homology features. Then we introduce two families of simplicial complexes that can be associated with chord sequences, and leverage homology to compute their salient features. Finally, we show the results of applying the described methods to the analysis and stylistic comparison of fragments from three Brandenburg Concertos by J.S. Bach and two Graffiti by Mexican composer Armando Luna.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A framework for topological music analysis (TMA)\",\"authors\":\"Alberto Alcal'a-Alvarez, P. Padilla-Longoria\",\"doi\":\"10.1080/17459737.2023.2219994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article we describe and discuss a framework for applying different topological data analysis (TDA) techniques to a music fragment given as a score in traditional Western notation. We first consider different sets of points in Euclidean spaces of different dimensions that correspond to musical events in the score, and obtain their persistent homology features. Then we introduce two families of simplicial complexes that can be associated with chord sequences, and leverage homology to compute their salient features. Finally, we show the results of applying the described methods to the analysis and stylistic comparison of fragments from three Brandenburg Concertos by J.S. Bach and two Graffiti by Mexican composer Armando Luna.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2023.2219994\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2023.2219994","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In the present article we describe and discuss a framework for applying different topological data analysis (TDA) techniques to a music fragment given as a score in traditional Western notation. We first consider different sets of points in Euclidean spaces of different dimensions that correspond to musical events in the score, and obtain their persistent homology features. Then we introduce two families of simplicial complexes that can be associated with chord sequences, and leverage homology to compute their salient features. Finally, we show the results of applying the described methods to the analysis and stylistic comparison of fragments from three Brandenburg Concertos by J.S. Bach and two Graffiti by Mexican composer Armando Luna.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.