{"title":"基于FFT系数形成二值模式的星图识别技术","authors":"D. S. Mehta, Shoushun Chen","doi":"10.1109/ISCAS.2018.8350965","DOIUrl":null,"url":null,"abstract":"A star sensor has become one of the most widely used attitude sensors for the satellite missions in the past decade. When no prior attitude information is available, it operates in a Lost-in-space (LIS) mode. The star pattern recognition technique forms the most crucial part of star sensor in the LIS mode. In this paper, we propose a novel star pattern recognition technique for an LIS mode star sensor. Firstly, a discrete sample signal is formed from the features extracted from the star image. Later, a 1D FFT is applied on the discrete sample signal. Finally, a binary pattern is formed from the relative magnitude of consecutive FFT coefficients for finding a match between the image and the database. Experiments are performed on simulated star images with missing and false stars. The proposed approach robustly maintains the identification accuracy to 97% on the swayed and biased simulated images.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"67 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Star Pattern Recognition Technique Based on the Binary Pattern Formed from the FFT Coefficients\",\"authors\":\"D. S. Mehta, Shoushun Chen\",\"doi\":\"10.1109/ISCAS.2018.8350965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A star sensor has become one of the most widely used attitude sensors for the satellite missions in the past decade. When no prior attitude information is available, it operates in a Lost-in-space (LIS) mode. The star pattern recognition technique forms the most crucial part of star sensor in the LIS mode. In this paper, we propose a novel star pattern recognition technique for an LIS mode star sensor. Firstly, a discrete sample signal is formed from the features extracted from the star image. Later, a 1D FFT is applied on the discrete sample signal. Finally, a binary pattern is formed from the relative magnitude of consecutive FFT coefficients for finding a match between the image and the database. Experiments are performed on simulated star images with missing and false stars. The proposed approach robustly maintains the identification accuracy to 97% on the swayed and biased simulated images.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"67 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8350965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8350965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Star Pattern Recognition Technique Based on the Binary Pattern Formed from the FFT Coefficients
A star sensor has become one of the most widely used attitude sensors for the satellite missions in the past decade. When no prior attitude information is available, it operates in a Lost-in-space (LIS) mode. The star pattern recognition technique forms the most crucial part of star sensor in the LIS mode. In this paper, we propose a novel star pattern recognition technique for an LIS mode star sensor. Firstly, a discrete sample signal is formed from the features extracted from the star image. Later, a 1D FFT is applied on the discrete sample signal. Finally, a binary pattern is formed from the relative magnitude of consecutive FFT coefficients for finding a match between the image and the database. Experiments are performed on simulated star images with missing and false stars. The proposed approach robustly maintains the identification accuracy to 97% on the swayed and biased simulated images.