闭式铀-钚NFC双组分核能系统发电的系统平准化燃料成本

A. Zrodnikov, V. Dekusar, O. Gurskaya
{"title":"闭式铀-钚NFC双组分核能系统发电的系统平准化燃料成本","authors":"A. Zrodnikov, V. Dekusar, O. Gurskaya","doi":"10.3897/nucet.7.78367","DOIUrl":null,"url":null,"abstract":"The authors propose an approach to the calculation of the levelized unit fuel cost (LUFC) of electricity generation for a fast reactor in a two-component nuclear energy system (NES) with regard for plutonium production. The approach is based on taking into account the additional economic effect, which can be achieved through the sale at the market price of the natural uranium released due to the substitution of thermal reactors by fast reactors with MOX fuel based on the plutonium bred in a fast reactor. This requires considering simultaneously the reactor parts of the fuel cycle for fast and thermal reactors. Relationships have been obtained which connect the key neutronic and fuel characteristics with the NPP and fuel cycle economic performance. The described methodology was used for the computational study of the LUFC for a fast sodium-cooled reactor. Calculations have shown that, in the considered case, taking into account the plutonium production leads to the LUFC reduction by nearly half and, therefore, to a major decrease in the total unit cost of electricity generation (levelized cost of electricity or LCOE).","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System levelized fuel cost of electricity generation in a two-component nuclear energy system with a closed uranium-plutonium NFC\",\"authors\":\"A. Zrodnikov, V. Dekusar, O. Gurskaya\",\"doi\":\"10.3897/nucet.7.78367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose an approach to the calculation of the levelized unit fuel cost (LUFC) of electricity generation for a fast reactor in a two-component nuclear energy system (NES) with regard for plutonium production. The approach is based on taking into account the additional economic effect, which can be achieved through the sale at the market price of the natural uranium released due to the substitution of thermal reactors by fast reactors with MOX fuel based on the plutonium bred in a fast reactor. This requires considering simultaneously the reactor parts of the fuel cycle for fast and thermal reactors. Relationships have been obtained which connect the key neutronic and fuel characteristics with the NPP and fuel cycle economic performance. The described methodology was used for the computational study of the LUFC for a fast sodium-cooled reactor. Calculations have shown that, in the considered case, taking into account the plutonium production leads to the LUFC reduction by nearly half and, therefore, to a major decrease in the total unit cost of electricity generation (levelized cost of electricity or LCOE).\",\"PeriodicalId\":100969,\"journal\":{\"name\":\"Nuclear Energy and Technology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Energy and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/nucet.7.78367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/nucet.7.78367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者提出了一种计算双组份核能系统(NES)快堆发电平准化单位燃料成本(LUFC)的方法。这是考虑到用快堆中产生的钚为原料的MOX燃料代替热堆而释放的天然铀,以市场价格出售所能获得的额外经济效果。这需要同时考虑快堆和热堆燃料循环的反应堆部分。得到了关键中子和燃料特性与NPP和燃料循环经济性之间的关系。所描述的方法用于快速钠冷堆LUFC的计算研究。计算表明,在所审议的情况下,考虑到钚的生产,可使最低成本减少近一半,从而大大减少发电的总单位成本(平准化电力成本或平准化电力成本)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System levelized fuel cost of electricity generation in a two-component nuclear energy system with a closed uranium-plutonium NFC
The authors propose an approach to the calculation of the levelized unit fuel cost (LUFC) of electricity generation for a fast reactor in a two-component nuclear energy system (NES) with regard for plutonium production. The approach is based on taking into account the additional economic effect, which can be achieved through the sale at the market price of the natural uranium released due to the substitution of thermal reactors by fast reactors with MOX fuel based on the plutonium bred in a fast reactor. This requires considering simultaneously the reactor parts of the fuel cycle for fast and thermal reactors. Relationships have been obtained which connect the key neutronic and fuel characteristics with the NPP and fuel cycle economic performance. The described methodology was used for the computational study of the LUFC for a fast sodium-cooled reactor. Calculations have shown that, in the considered case, taking into account the plutonium production leads to the LUFC reduction by nearly half and, therefore, to a major decrease in the total unit cost of electricity generation (levelized cost of electricity or LCOE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信