DOT正演问题的EFG-FE混合分析

M. Hadinia, R. Jafari
{"title":"DOT正演问题的EFG-FE混合分析","authors":"M. Hadinia, R. Jafari","doi":"10.1109/ISOT.2010.5687328","DOIUrl":null,"url":null,"abstract":"This paper presents an approach based on combination of Element Free Galerkin (EFG) method and Finite Element (FE) method in Diffuse Optical Tomography (DOT) forward problem. DOT is a non-invasive imaging modality for visualizing and continuously monitoring tissue and blood oxygenation levels in brain and breast. The image reconstruction algorithm in DOT involves generating images by means of forward modeling results and the boundary measurements. The ability of the forward model to generate the corresponding data efficiently has a sign ificant role in DOT image reconstruction. FE technique using a fixed mesh is one of the most typical techniques for solving the diffusion equation in the DOT forward problem. However, in some medical applications, meshing task is difficult and the shape and size of elements make a further approximation in the forward problem. Mesh free Galerkin approach is also utilized in DO T, but imposing essential boundary conditions is difficult. In this paper, an approach based on combination of the two methods is used. The validity of the proposed method is investigated by simulation results.","PeriodicalId":91154,"journal":{"name":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","volume":"27 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid EFG-FE analysis for DOT forward problem\",\"authors\":\"M. Hadinia, R. Jafari\",\"doi\":\"10.1109/ISOT.2010.5687328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach based on combination of Element Free Galerkin (EFG) method and Finite Element (FE) method in Diffuse Optical Tomography (DOT) forward problem. DOT is a non-invasive imaging modality for visualizing and continuously monitoring tissue and blood oxygenation levels in brain and breast. The image reconstruction algorithm in DOT involves generating images by means of forward modeling results and the boundary measurements. The ability of the forward model to generate the corresponding data efficiently has a sign ificant role in DOT image reconstruction. FE technique using a fixed mesh is one of the most typical techniques for solving the diffusion equation in the DOT forward problem. However, in some medical applications, meshing task is difficult and the shape and size of elements make a further approximation in the forward problem. Mesh free Galerkin approach is also utilized in DO T, but imposing essential boundary conditions is difficult. In this paper, an approach based on combination of the two methods is used. The validity of the proposed method is investigated by simulation results.\",\"PeriodicalId\":91154,\"journal\":{\"name\":\"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)\",\"volume\":\"27 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOT.2010.5687328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2010.5687328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于无单元伽辽金法(EFG)和有限元法(FE)相结合的漫射光学层析成像(DOT)正演问题求解方法。DOT是一种非侵入性成像方式,用于可视化和连续监测脑和乳腺组织和血液氧合水平。DOT图像重建算法包括利用正演模拟结果和边界测量结果生成图像。正演模型高效生成相应数据的能力在DOT图像重建中具有重要作用。固定网格有限元技术是求解DOT正演问题中扩散方程最典型的技术之一。然而,在一些医学应用中,网格划分任务是困难的,在正演问题中,单元的形状和尺寸进一步逼近。无网格伽辽金方法也被用于DO T,但施加必要的边界条件是困难的。本文采用了两种方法相结合的方法。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid EFG-FE analysis for DOT forward problem
This paper presents an approach based on combination of Element Free Galerkin (EFG) method and Finite Element (FE) method in Diffuse Optical Tomography (DOT) forward problem. DOT is a non-invasive imaging modality for visualizing and continuously monitoring tissue and blood oxygenation levels in brain and breast. The image reconstruction algorithm in DOT involves generating images by means of forward modeling results and the boundary measurements. The ability of the forward model to generate the corresponding data efficiently has a sign ificant role in DOT image reconstruction. FE technique using a fixed mesh is one of the most typical techniques for solving the diffusion equation in the DOT forward problem. However, in some medical applications, meshing task is difficult and the shape and size of elements make a further approximation in the forward problem. Mesh free Galerkin approach is also utilized in DO T, but imposing essential boundary conditions is difficult. In this paper, an approach based on combination of the two methods is used. The validity of the proposed method is investigated by simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信