高斯测度的不等式及其在维纳空间中的应用

Gilles Hargé
{"title":"高斯测度的不等式及其在维纳空间中的应用","authors":"Gilles Hargé","doi":"10.1016/S0764-4442(01)02122-X","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with a generalization of a result due to Brascamp and Lieb which states that in the space of probabilities with log-concave density with respect to a Gaussian measure on <span><math><mtext>R</mtext><msup><mi></mi><mn>n</mn></msup></math></span>, this Gaussian measure is the one which has strongest moments. We show that this theorem remains true if we replace <em>x</em><sup><em>α</em></sup> by a general convex function. Then, we deduce a correlation inequality for convex functions quite better than the one already known. Finally, we prove a result concerning stochastic analysis on Wiener space through the notion of approximate limit.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 8","pages":"Pages 791-794"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02122-X","citationCount":"6","resultStr":"{\"title\":\"Inequalities for the Gaussian measure and an application to Wiener space\",\"authors\":\"Gilles Hargé\",\"doi\":\"10.1016/S0764-4442(01)02122-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with a generalization of a result due to Brascamp and Lieb which states that in the space of probabilities with log-concave density with respect to a Gaussian measure on <span><math><mtext>R</mtext><msup><mi></mi><mn>n</mn></msup></math></span>, this Gaussian measure is the one which has strongest moments. We show that this theorem remains true if we replace <em>x</em><sup><em>α</em></sup> by a general convex function. Then, we deduce a correlation inequality for convex functions quite better than the one already known. Finally, we prove a result concerning stochastic analysis on Wiener space through the notion of approximate limit.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 8\",\"pages\":\"Pages 791-794\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02122-X\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S076444420102122X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S076444420102122X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文讨论了Brascamp和Lieb的一个结果的推广,该结果表明,在Rn上的高斯测度的对数凹密度概率空间中,该高斯测度具有最强的矩。我们证明如果用一个一般的凸函数代替xα,这个定理仍然成立。然后,我们推导出凸函数的相关不等式,比已知的相关不等式更好。最后,利用近似极限的概念证明了关于Wiener空间上随机分析的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities for the Gaussian measure and an application to Wiener space

This paper deals with a generalization of a result due to Brascamp and Lieb which states that in the space of probabilities with log-concave density with respect to a Gaussian measure on Rn, this Gaussian measure is the one which has strongest moments. We show that this theorem remains true if we replace xα by a general convex function. Then, we deduce a correlation inequality for convex functions quite better than the one already known. Finally, we prove a result concerning stochastic analysis on Wiener space through the notion of approximate limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信