D. Molinero, C. Palego, X. Luo, J. Hwang, C. Goldsmith
{"title":"微机电电容开关介电充电特性的射频烧毁","authors":"D. Molinero, C. Palego, X. Luo, J. Hwang, C. Goldsmith","doi":"10.1109/MWSYM.2012.6257778","DOIUrl":null,"url":null,"abstract":"We report, for the first time, the benefit of RF burn-in at power levels significantly higher than the nominal handling capacity of micro-electromechanical capacitive switches. The benefit appears to be permanent, so that, after burn-in, the switches remain less vulnerable to dielectric charging and, presumably, more reliable. It was speculated that high RF power permanently changed the bond configuration of the silicon-dioxide dielectric, which prevented charge injection under DC bias. Obviously, more detailed study is needed to elucidate the detailed burn-in mechanism. However, this initial result is very encouraging and can facilitate the application of these switches in many RF systems.","PeriodicalId":6385,"journal":{"name":"2012 IEEE/MTT-S International Microwave Symposium Digest","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RF burn-in of dielectric-charging characteristics of micro-electromechanical capacitive switches\",\"authors\":\"D. Molinero, C. Palego, X. Luo, J. Hwang, C. Goldsmith\",\"doi\":\"10.1109/MWSYM.2012.6257778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report, for the first time, the benefit of RF burn-in at power levels significantly higher than the nominal handling capacity of micro-electromechanical capacitive switches. The benefit appears to be permanent, so that, after burn-in, the switches remain less vulnerable to dielectric charging and, presumably, more reliable. It was speculated that high RF power permanently changed the bond configuration of the silicon-dioxide dielectric, which prevented charge injection under DC bias. Obviously, more detailed study is needed to elucidate the detailed burn-in mechanism. However, this initial result is very encouraging and can facilitate the application of these switches in many RF systems.\",\"PeriodicalId\":6385,\"journal\":{\"name\":\"2012 IEEE/MTT-S International Microwave Symposium Digest\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/MTT-S International Microwave Symposium Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2012.6257778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2012.6257778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RF burn-in of dielectric-charging characteristics of micro-electromechanical capacitive switches
We report, for the first time, the benefit of RF burn-in at power levels significantly higher than the nominal handling capacity of micro-electromechanical capacitive switches. The benefit appears to be permanent, so that, after burn-in, the switches remain less vulnerable to dielectric charging and, presumably, more reliable. It was speculated that high RF power permanently changed the bond configuration of the silicon-dioxide dielectric, which prevented charge injection under DC bias. Obviously, more detailed study is needed to elucidate the detailed burn-in mechanism. However, this initial result is very encouraging and can facilitate the application of these switches in many RF systems.