{"title":"双边界SQG模型的长波不稳定性","authors":"M. Kalashnik","doi":"10.1080/03091929.2020.1831483","DOIUrl":null,"url":null,"abstract":"ABSTRACT Surface quasi-geostrophic (SQG) flows with a much larger horizontal scale than the Rossby radius of deformation are considered. A new version of the SQG model with two boundaries, which is reduced to a nonlinear system of partial differential equations, is proposed to describe the dynamics of such flows. This system describes the interaction between the barotropic and baroclinic components of the stream function and generalises the two-dimensional Euler equations for flows with a vertical velocity shear. The laws of conservation of both total and surface potential energies, which follow from this system, have been formulated. The solutions of a number of problems in the theory of baroclinic instability, which are in agreement with already known solutions, have been obtained within the framework of this system. It is shown that vertical shear flows are absolutely unstable, i.e. their instability is independent of the horizontal velocity profile structure. A generalised system of the SQG model equations, which additionally takes into account the β-effect and the Ekman bottom friction, has also been proposed. The transformation of jet flows due to the bottom friction and the influence of the β-effect on the stability of shear flows have been studied based on this system.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"4 1","pages":"393 - 411"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long-wave instabilities in the SQG model with two boundaries\",\"authors\":\"M. Kalashnik\",\"doi\":\"10.1080/03091929.2020.1831483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Surface quasi-geostrophic (SQG) flows with a much larger horizontal scale than the Rossby radius of deformation are considered. A new version of the SQG model with two boundaries, which is reduced to a nonlinear system of partial differential equations, is proposed to describe the dynamics of such flows. This system describes the interaction between the barotropic and baroclinic components of the stream function and generalises the two-dimensional Euler equations for flows with a vertical velocity shear. The laws of conservation of both total and surface potential energies, which follow from this system, have been formulated. The solutions of a number of problems in the theory of baroclinic instability, which are in agreement with already known solutions, have been obtained within the framework of this system. It is shown that vertical shear flows are absolutely unstable, i.e. their instability is independent of the horizontal velocity profile structure. A generalised system of the SQG model equations, which additionally takes into account the β-effect and the Ekman bottom friction, has also been proposed. The transformation of jet flows due to the bottom friction and the influence of the β-effect on the stability of shear flows have been studied based on this system.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"4 1\",\"pages\":\"393 - 411\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1831483\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1831483","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Long-wave instabilities in the SQG model with two boundaries
ABSTRACT Surface quasi-geostrophic (SQG) flows with a much larger horizontal scale than the Rossby radius of deformation are considered. A new version of the SQG model with two boundaries, which is reduced to a nonlinear system of partial differential equations, is proposed to describe the dynamics of such flows. This system describes the interaction between the barotropic and baroclinic components of the stream function and generalises the two-dimensional Euler equations for flows with a vertical velocity shear. The laws of conservation of both total and surface potential energies, which follow from this system, have been formulated. The solutions of a number of problems in the theory of baroclinic instability, which are in agreement with already known solutions, have been obtained within the framework of this system. It is shown that vertical shear flows are absolutely unstable, i.e. their instability is independent of the horizontal velocity profile structure. A generalised system of the SQG model equations, which additionally takes into account the β-effect and the Ekman bottom friction, has also been proposed. The transformation of jet flows due to the bottom friction and the influence of the β-effect on the stability of shear flows have been studied based on this system.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.